Metal halide perovskite light emitting diodes(PeLEDs)have recently experienced rapid development due to the tunable emission wavelengths,narrow emission linewidth and low material cost.To achieve stateof-the-art perfo...Metal halide perovskite light emitting diodes(PeLEDs)have recently experienced rapid development due to the tunable emission wavelengths,narrow emission linewidth and low material cost.To achieve stateof-the-art performance,the high photoluminescence quantum yield(PLQY)of the active emission layer,the balanced charge injection,and the optimized optical extraction should be considered simultaneously.Multiple chemical passivation strategies have been provided as controllable and efficient methods to improve the PLQY of the perovskite layer.However,high luminance under large injection current and high external quantum efficiency(EQE)can hardly be achieved due to Auger recombination at high carrier density.Here,we decreased the electron injection barrier by tuning the Fermi-level of the perovskite,leading to a reduced turn on voltage.Through molecular doping of the hole injection material,a more balanced hole injection was achieved.At last,a device with modified charge injection realizes high luminance and quantum efficiency simultaneously.The best device exhibits luminance of 55,000 cd m^-2 EQE of 8.02%at the working voltage of 2.65 V,current density of 115 mA cm^-2,and shows EQE T50 stability around 160 min at 100 mA cm^-2 injection current density.展开更多
With monomer allylamine, amine-containing functional films were prepared in alternative current pulsed dielectric barrier discharge (DBD) at a high pressure. This paper analyses in detail the film properties and str...With monomer allylamine, amine-containing functional films were prepared in alternative current pulsed dielectric barrier discharge (DBD) at a high pressure. This paper analyses in detail the film properties and structures, such as hydrophilicity, compounds and microstructures as well as amine density by the water contact angle, Fourier transform infrared spectroscopy, atomic force microscopy, and ultraviolet-visible measurement. The influence of discharge param- eters, in particular applied power, on amine density was investigated. As an application the cell adsorption behaviours on plasma polymerization films was performed in-vitro. The results show that at a high pressure pulsed DBD plasma can polymerize films with sufficient amine group on surface, through which the very efficient cell adsorption behaviours was demonstrated, and the high rate of cell proliferation was visualized.展开更多
基金in part supported by Research Grants Council of Hong Kong,particularly,via Grant Nos.Ao E/P-03/08,T23-407/13-N,Ao E/P-02/12,14207515,14204616CUHK Group Research Scheme,and ITS/088/17 by Innovation and Technology Commission,Hong Kong SAR Governmentthe National Natural Science Foundation of China for the support,particularly,via Grant No.61229401。
文摘Metal halide perovskite light emitting diodes(PeLEDs)have recently experienced rapid development due to the tunable emission wavelengths,narrow emission linewidth and low material cost.To achieve stateof-the-art performance,the high photoluminescence quantum yield(PLQY)of the active emission layer,the balanced charge injection,and the optimized optical extraction should be considered simultaneously.Multiple chemical passivation strategies have been provided as controllable and efficient methods to improve the PLQY of the perovskite layer.However,high luminance under large injection current and high external quantum efficiency(EQE)can hardly be achieved due to Auger recombination at high carrier density.Here,we decreased the electron injection barrier by tuning the Fermi-level of the perovskite,leading to a reduced turn on voltage.Through molecular doping of the hole injection material,a more balanced hole injection was achieved.At last,a device with modified charge injection realizes high luminance and quantum efficiency simultaneously.The best device exhibits luminance of 55,000 cd m^-2 EQE of 8.02%at the working voltage of 2.65 V,current density of 115 mA cm^-2,and shows EQE T50 stability around 160 min at 100 mA cm^-2 injection current density.
基金supported by the National Natural Science Foundation of China (Grant No 10775017)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality
文摘With monomer allylamine, amine-containing functional films were prepared in alternative current pulsed dielectric barrier discharge (DBD) at a high pressure. This paper analyses in detail the film properties and structures, such as hydrophilicity, compounds and microstructures as well as amine density by the water contact angle, Fourier transform infrared spectroscopy, atomic force microscopy, and ultraviolet-visible measurement. The influence of discharge param- eters, in particular applied power, on amine density was investigated. As an application the cell adsorption behaviours on plasma polymerization films was performed in-vitro. The results show that at a high pressure pulsed DBD plasma can polymerize films with sufficient amine group on surface, through which the very efficient cell adsorption behaviours was demonstrated, and the high rate of cell proliferation was visualized.