期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
GEOMETRIC INEQUALITIES FOR CERTAIN SUBMANIFOLDS IN A PINCHED RIEMANNIAN MANIFOLD 被引量:1
1
作者 谢纳 许洪伟 《Acta Mathematica Scientia》 SCIE CSCD 2007年第3期611-618,共8页
This article gives some geometric inequalities for a submanifold with parallel second fundamental form in a pinched Riemannian manifold and the distribution for the square norm of its second fundamental form.
关键词 SUBMANIFOLDS second fundamental form pinched Riemannian manifold
下载PDF
非球对称情形箍猜想若干进展
2
作者 谢纳 《中国科学:数学》 CSCD 北大核心 2018年第6期835-842,共8页
本文简要地介绍了本文作者及其合作者最近几年在非球对称情形箍猜想研究方面的若干进展.
关键词 箍猜想 陷俘面 准局域质量
原文传递
On limit behavior of quasi-local mass for ellipsoids at spatial infinity
3
作者 Xiaokai He Leong-Fai Wong Naqing Xie 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第1期102-110,共9页
We discuss the spatial limit of the quasi-local mass for certain ellipsoids in an asymptotically flat static spherically symmetric spacetime.These ellipsoids are not nearly round but they are of interest as an admissi... We discuss the spatial limit of the quasi-local mass for certain ellipsoids in an asymptotically flat static spherically symmetric spacetime.These ellipsoids are not nearly round but they are of interest as an admissible parametrized foliation defining the Arnowitt–Deser–Misner mass.The Hawking mass of this family of ellipsoids tends to-∞.In contrast,we show that the Hayward mass converges to a finite value.Moreover,a positive mass type theorem is established.The limit of the mass has a uniform positive lower bound no matter how oblate these ellipsoids are.This result could be extended for asymptotically Schwarzschild manifolds.And numerical simulation in the Schwarzschild spacetime illustrates that the Hayward mass is monotonically increasing near infinity. 展开更多
关键词 quasi-local MASS asymptotically flat LIMIT BEHAVIOR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部