为研制大位移磁致伸缩位移传感器,对扭转超声波在波导丝中的衰减特性进行研究。由于波导丝材料的均一性受拉伸等加工环节的影响,材料的内部变化对检测信号的影响大于超声波在短距离传播的衰减变化。提出的检测方案将永磁体固定在波导丝...为研制大位移磁致伸缩位移传感器,对扭转超声波在波导丝中的衰减特性进行研究。由于波导丝材料的均一性受拉伸等加工环节的影响,材料的内部变化对检测信号的影响大于超声波在短距离传播的衰减变化。提出的检测方案将永磁体固定在波导丝正中间,去掉两端的阻尼,使得向两端传播的超声波受到同样的反射,通过检测两个回波的幅值来测量超声波衰减系数,可以滤除材料不均匀性产生的影响。搭建了磁致伸缩位移传感器实验平台,基于所提实验方法,测得频率为65 k Hz的扭转超声波在线径为0.5 mm且不受拉力作用下的Fe-Ga和Fe-Ni波导丝的衰减系数分别为1.34 d B/m和1.57 d B/m。实验还对比了不同线径Fe-Ga波导丝、不同扭转超声波频率和波导丝在不同拉力作用下的衰减系数变化,结果表明:衰减系数随波导丝线径的增大而增大;衰减系数与扭转超声波的频率呈正相关;衰减系数随波导丝两端拉力的增大先减小后趋于稳定。展开更多
通过对传统Fe-Ga磁致伸缩位移传感器驱动脉冲电流输入端位置的改进,降低了驱动脉冲电流噪声对检测线圈输出电压的影响,并使检测线圈输出电压信噪比由15.5 d B提高至23.7 d B。基于应力波无阻尼反射原理提出一种新的回波速度校正法,确立...通过对传统Fe-Ga磁致伸缩位移传感器驱动脉冲电流输入端位置的改进,降低了驱动脉冲电流噪声对检测线圈输出电压的影响,并使检测线圈输出电压信噪比由15.5 d B提高至23.7 d B。基于应力波无阻尼反射原理提出一种新的回波速度校正法,确立了回波速度与波导丝长度、应力波传播时间、反射波传播时间的数学关系,并给出此表达式适用的驱动脉冲电流频率范围。制作了样机,通过实验验证了此方法最大位移测量误差减小到原来的1/5,为Fe-Ga磁致伸缩位移传感器输出性能研究提供了理论依据。展开更多
为减小剩磁和驱动脉冲电流对磁致伸缩位移传感器检测信号的影响,进而提高传感器的测量精度,对FeGa磁致伸缩位移传感器的结构进行设计,提出了一种移动线圈式结构的磁致伸缩位移传感器,此时永磁体固定在波导丝头部,位置线圈在波导丝上移...为减小剩磁和驱动脉冲电流对磁致伸缩位移传感器检测信号的影响,进而提高传感器的测量精度,对FeGa磁致伸缩位移传感器的结构进行设计,提出了一种移动线圈式结构的磁致伸缩位移传感器,此时永磁体固定在波导丝头部,位置线圈在波导丝上移动起到位移改变的作用。制作了新结构的传感器样机,实验结果表明:与传统结构相比,结构改进后检测信号的信噪比由13.4 d B提高至25.2 d B,检测电压幅值由52 m V提高至80 m V,且能实现回波速度校正。移动线圈式磁致伸缩位移传感器能有效改善传感器的线性度、重复性和迟滞性。展开更多
利用AMH-1M-S型动态磁滞特性测试系统测试了铁镓合金的动态磁滞特性。以内径为5.5mm、外径为7.25 mm的环形<100>取向多晶Fe83Ga17合金为测量对象,分别对励磁磁场频率为50、100、200、300、400 k Hz和最大饱和磁密为0.01、0.03、0...利用AMH-1M-S型动态磁滞特性测试系统测试了铁镓合金的动态磁滞特性。以内径为5.5mm、外径为7.25 mm的环形<100>取向多晶Fe83Ga17合金为测量对象,分别对励磁磁场频率为50、100、200、300、400 k Hz和最大饱和磁密为0.01、0.03、0.05、0.07 T两个方面研究了磁滞曲线和磁特性参数变化规律。实验表明:当励磁磁场频率或最大饱和磁密增加,磁滞曲线变宽、面积增大,剩磁、矫顽力、损耗增加。本文的实验结果为铁镓材料的应用提供了基础参数。展开更多
在传统磁致伸缩位移传感器结构基础上,提出一种基于应力波无阻尼反射的位移测量方法,该方法可避免磁敏伸缩位移传感器传统测量方法需要位移标定问题,并使位移分辨率提高1倍,制作了样机,通过实验验证了此测量方法的有效性和正确性。文中...在传统磁致伸缩位移传感器结构基础上,提出一种基于应力波无阻尼反射的位移测量方法,该方法可避免磁敏伸缩位移传感器传统测量方法需要位移标定问题,并使位移分辨率提高1倍,制作了样机,通过实验验证了此测量方法的有效性和正确性。文中针对信号傅里叶变换后没有时间和频率之间的定位信息,提出一种基于HHT的回波信号分析和数字滤波方法,使回波信号的信噪比由12.4 d B提高到23.5 d B。展开更多
文摘为研制大位移磁致伸缩位移传感器,对扭转超声波在波导丝中的衰减特性进行研究。由于波导丝材料的均一性受拉伸等加工环节的影响,材料的内部变化对检测信号的影响大于超声波在短距离传播的衰减变化。提出的检测方案将永磁体固定在波导丝正中间,去掉两端的阻尼,使得向两端传播的超声波受到同样的反射,通过检测两个回波的幅值来测量超声波衰减系数,可以滤除材料不均匀性产生的影响。搭建了磁致伸缩位移传感器实验平台,基于所提实验方法,测得频率为65 k Hz的扭转超声波在线径为0.5 mm且不受拉力作用下的Fe-Ga和Fe-Ni波导丝的衰减系数分别为1.34 d B/m和1.57 d B/m。实验还对比了不同线径Fe-Ga波导丝、不同扭转超声波频率和波导丝在不同拉力作用下的衰减系数变化,结果表明:衰减系数随波导丝线径的增大而增大;衰减系数与扭转超声波的频率呈正相关;衰减系数随波导丝两端拉力的增大先减小后趋于稳定。
文摘通过对传统Fe-Ga磁致伸缩位移传感器驱动脉冲电流输入端位置的改进,降低了驱动脉冲电流噪声对检测线圈输出电压的影响,并使检测线圈输出电压信噪比由15.5 d B提高至23.7 d B。基于应力波无阻尼反射原理提出一种新的回波速度校正法,确立了回波速度与波导丝长度、应力波传播时间、反射波传播时间的数学关系,并给出此表达式适用的驱动脉冲电流频率范围。制作了样机,通过实验验证了此方法最大位移测量误差减小到原来的1/5,为Fe-Ga磁致伸缩位移传感器输出性能研究提供了理论依据。
文摘为减小剩磁和驱动脉冲电流对磁致伸缩位移传感器检测信号的影响,进而提高传感器的测量精度,对FeGa磁致伸缩位移传感器的结构进行设计,提出了一种移动线圈式结构的磁致伸缩位移传感器,此时永磁体固定在波导丝头部,位置线圈在波导丝上移动起到位移改变的作用。制作了新结构的传感器样机,实验结果表明:与传统结构相比,结构改进后检测信号的信噪比由13.4 d B提高至25.2 d B,检测电压幅值由52 m V提高至80 m V,且能实现回波速度校正。移动线圈式磁致伸缩位移传感器能有效改善传感器的线性度、重复性和迟滞性。
文摘利用AMH-1M-S型动态磁滞特性测试系统测试了铁镓合金的动态磁滞特性。以内径为5.5mm、外径为7.25 mm的环形<100>取向多晶Fe83Ga17合金为测量对象,分别对励磁磁场频率为50、100、200、300、400 k Hz和最大饱和磁密为0.01、0.03、0.05、0.07 T两个方面研究了磁滞曲线和磁特性参数变化规律。实验表明:当励磁磁场频率或最大饱和磁密增加,磁滞曲线变宽、面积增大,剩磁、矫顽力、损耗增加。本文的实验结果为铁镓材料的应用提供了基础参数。
文摘在传统磁致伸缩位移传感器结构基础上,提出一种基于应力波无阻尼反射的位移测量方法,该方法可避免磁敏伸缩位移传感器传统测量方法需要位移标定问题,并使位移分辨率提高1倍,制作了样机,通过实验验证了此测量方法的有效性和正确性。文中针对信号傅里叶变换后没有时间和频率之间的定位信息,提出一种基于HHT的回波信号分析和数字滤波方法,使回波信号的信噪比由12.4 d B提高到23.5 d B。