Stable and persistent bipolar resistive switching was observed in an organic diode with the structure of indium-tin oxide (ITO)/bis(8-hydroxyquinoline) cadmium (Cdq2)/Al. Aggregate formation and electric field d...Stable and persistent bipolar resistive switching was observed in an organic diode with the structure of indium-tin oxide (ITO)/bis(8-hydroxyquinoline) cadmium (Cdq2)/Al. Aggregate formation and electric field driven trapping and detrapping of charge carriers in the aggregate states that lie in the energy gap of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the organic molecule were proposed as the mechanism of the observed bipolar resistive switching, and this was solidly supported by the results of AFM investigations. Repeatedly set, read, and reset measurements demonstrated that the device is potentially applicable in non-volatile memories.展开更多
基金the National Natural Science Foundation of China(Grant No.10974074)
文摘Stable and persistent bipolar resistive switching was observed in an organic diode with the structure of indium-tin oxide (ITO)/bis(8-hydroxyquinoline) cadmium (Cdq2)/Al. Aggregate formation and electric field driven trapping and detrapping of charge carriers in the aggregate states that lie in the energy gap of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the organic molecule were proposed as the mechanism of the observed bipolar resistive switching, and this was solidly supported by the results of AFM investigations. Repeatedly set, read, and reset measurements demonstrated that the device is potentially applicable in non-volatile memories.