期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于梯度搜索与进化机制的多目标混合算法
1
作者 诸才 唐智礼 +1 位作者 赵鑫 曹凡 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第6期1940-1951,共12页
多目标进化算法(MOEA)因其良好的全局探索能力备受关注,但其在最优值附近的局部搜索能力却相对较弱,且对于具有大规模决策变量的优化问题,MOEA所需的种群数量与迭代次数都十分庞大,优化效率较低。基于梯度的优化算法能够很好地克服这些... 多目标进化算法(MOEA)因其良好的全局探索能力备受关注,但其在最优值附近的局部搜索能力却相对较弱,且对于具有大规模决策变量的优化问题,MOEA所需的种群数量与迭代次数都十分庞大,优化效率较低。基于梯度的优化算法能够很好地克服这些问题,但梯度搜索算法很难应用于多目标问题(MOPs)。在加权平均梯度的基础上引入随机权函数,发展多目标梯度算子,将其与基于参考点的第三代非支配排序遗传算法(NSGA-Ⅲ)结合,发展了多目标梯度优化算法(MOGBA)和多目标混合进化算法(HMOEA)。HMOEA在保留NSGA-Ⅲ良好的全局探索能力的同时,极大地增强了局部搜索能力。数值实验表明:HMOEA对于各种Pareto阵面都具有优秀的捕获能力,与典型的多目标算法相比效率提升了5~10倍。进一步将HMOEA应用于RAE2822翼型的多目标气动优化问题中,得到了理想的Pareto前沿,表明HMOEA是一种高效的优化算法,在气动优化设计中具有潜在的应用价值。 展开更多
关键词 多目标优化 混合算法 进化算法 梯度方法 气动优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部