In the retina, pH fluctuations may play an important role in adapting retinal responses to different light intensities and are involved in the fine tuning of visual perception. Acidosis occurs in the subretinal space ...In the retina, pH fluctuations may play an important role in adapting retinal responses to different light intensities and are involved in the fine tuning of visual perception. Acidosis occurs in the subretinal space (SRS) under pathological conditions such as age-related macular degeneration (AMD). Although it is well known that many transporters in the retinal pigment epithelium (RPE) cells can maintain pH homeostasis efficiently, other receptors in RPE may also be involved in sensing acidosis, such as acid-sensing ion channels (ASICs). In this study, we investigated whether ASICla was ex- pressed in the RPE cells and whether it was involved in the function of these cells. Real-time RT-PCR and Western blotting were used to analyze the ASICla expression in ARPE-19 cells during oxidative stress induced by hydrogen peroxide (H202). Furthermore, inhibition or over-expression of ASICla in RPE cells was obtained using inhibitors (amiloride and PCTxl) or by the transfection of cDNA encod- ing hASICla. Cell viability was determined by using the MTT assay. The real-time RT-PCR and West- ern blotting results showed that both the mRNA and protein of ASICla were expressed in RPE cells. In- hibition of ASICs by amiloride in normal RPE cells resulted in cell death, indicating that ASICs play an important physiological role in RPE cells. Furthermore, over-expression of ASICla in RPE cells pro- longed cell survival under oxidative stress induced by H2O2. In conclusion, ASICla is functionally expressed in RPE cells and may play an important role in the physiological function of RPE cells by pro-tecting them from oxidative stress.展开更多
基金supported by the National Natural Science Foundation of China (No. 81200681)
文摘In the retina, pH fluctuations may play an important role in adapting retinal responses to different light intensities and are involved in the fine tuning of visual perception. Acidosis occurs in the subretinal space (SRS) under pathological conditions such as age-related macular degeneration (AMD). Although it is well known that many transporters in the retinal pigment epithelium (RPE) cells can maintain pH homeostasis efficiently, other receptors in RPE may also be involved in sensing acidosis, such as acid-sensing ion channels (ASICs). In this study, we investigated whether ASICla was ex- pressed in the RPE cells and whether it was involved in the function of these cells. Real-time RT-PCR and Western blotting were used to analyze the ASICla expression in ARPE-19 cells during oxidative stress induced by hydrogen peroxide (H202). Furthermore, inhibition or over-expression of ASICla in RPE cells was obtained using inhibitors (amiloride and PCTxl) or by the transfection of cDNA encod- ing hASICla. Cell viability was determined by using the MTT assay. The real-time RT-PCR and West- ern blotting results showed that both the mRNA and protein of ASICla were expressed in RPE cells. In- hibition of ASICs by amiloride in normal RPE cells resulted in cell death, indicating that ASICs play an important physiological role in RPE cells. Furthermore, over-expression of ASICla in RPE cells pro- longed cell survival under oxidative stress induced by H2O2. In conclusion, ASICla is functionally expressed in RPE cells and may play an important role in the physiological function of RPE cells by pro-tecting them from oxidative stress.