Using a special property of dynamic complementary-suppression-modulated transmission (DCSMT) in the bacteriorhodopsin (bR) film, we have demonstrated an all-optical time-delay relay. To extend our work, the relati...Using a special property of dynamic complementary-suppression-modulated transmission (DCSMT) in the bacteriorhodopsin (bR) film, we have demonstrated an all-optical time-delay relay. To extend our work, the relationship between the delay time of the all-optical time-delay relay and parameters of a bR film is numerically studied. We show how the delay time changes with the product of concentration and thickness (PCT) of a bR film. Furthermore, the shortest and longest delay times are given for the relay of 'switch off. The saturable delay time and maximum delaytime of 'switch on' are also given. How the wavelengths (632.8, 568, 533 and 412 nm) and intensities of the illuminating light influence the delay time is also discussed. The simulation results are useful for optimizing the design of all-optical time-delay relays.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10774152, and 60578020)the Natural Science Foundation of Shangdong Province, China (Grant No Y2006A01)the Key Laboratory of Weak Light Nonlinear Photonics
文摘Using a special property of dynamic complementary-suppression-modulated transmission (DCSMT) in the bacteriorhodopsin (bR) film, we have demonstrated an all-optical time-delay relay. To extend our work, the relationship between the delay time of the all-optical time-delay relay and parameters of a bR film is numerically studied. We show how the delay time changes with the product of concentration and thickness (PCT) of a bR film. Furthermore, the shortest and longest delay times are given for the relay of 'switch off. The saturable delay time and maximum delaytime of 'switch on' are also given. How the wavelengths (632.8, 568, 533 and 412 nm) and intensities of the illuminating light influence the delay time is also discussed. The simulation results are useful for optimizing the design of all-optical time-delay relays.