随着经济的快速发展,城市内部空间结构不断优化。识别城市功能区空间分布及其相互作用规律,对于把握城市空间结构以及制定科学合理的规划具有重要意义。采用重尾打断分类法和核密度聚类法对兴趣点(points of interest,POI)进行分析,...随着经济的快速发展,城市内部空间结构不断优化。识别城市功能区空间分布及其相互作用规律,对于把握城市空间结构以及制定科学合理的规划具有重要意义。采用重尾打断分类法和核密度聚类法对兴趣点(points of interest,POI)进行分析,识别城市功能区,并结合出租车轨迹数据进行时空挖掘,定量分析典型城市功能区交通吸引规律及其相互作用强度和方向。以北京市五环内主城区为例进行分析,可得:(1)该方法可以识别典型功能区西单、国贸、中关村是以商业为主的混合城市功能区,望京是以居住为主的混合功能区,且居民通勤出行特征明显;(2)国贸对自身的引力较强(39.4%),说明国贸区域城市功能更加齐全;(3)典型功能区对居民出行距离范围内的区域吸引力随着距离的增加而减弱,符合经验认知和地理空间衰减规律。结果表明,利用POI和移动大数据采用重尾打断分类法和核密度聚类法进行城市功能区识别与分析是可行和有效的。展开更多
基于稀疏监测点的监测数据无法直接获取城市内部空气污染的高分辨率空间分布。以武汉市为例,研究了基于土地利用回归(land use regression,LUR)模型的大气PM2.5浓度高分辨率空间分布模拟。采用双变量相关分析识别出与PM2.5浓度相关性最...基于稀疏监测点的监测数据无法直接获取城市内部空气污染的高分辨率空间分布。以武汉市为例,研究了基于土地利用回归(land use regression,LUR)模型的大气PM2.5浓度高分辨率空间分布模拟。采用双变量相关分析识别出与PM2.5浓度相关性最高的4个影响因子,分别是1 000m缓冲区内道路长度,500m缓冲区内水域面积,500m缓冲区内建设用地面积以及工业污染影响。采用PM2.5月平均浓度和识别出的影响因子连同气象条件(月平均温度和月降水量)进行多元线性回归分析,相关系数R2达到0.905,调整后的R2为0.885。在研究区建立均匀格网(2km×2km),利用得到的LUR方程计算格点PM2.5浓度值,应用空间插值制成武汉市主城区夏季PM2.5浓度空间分布模拟图。模拟结果显示,主城区有三个PM2.5浓度高值中心,分别为青山工业区、江北工业区和汉口汉西建材市场区域。汉阳南部、武昌南部的大型湖泊和水域面积比例较大的区域表现为两个PM2.5浓度低值中心。展开更多
文摘随着经济的快速发展,城市内部空间结构不断优化。识别城市功能区空间分布及其相互作用规律,对于把握城市空间结构以及制定科学合理的规划具有重要意义。采用重尾打断分类法和核密度聚类法对兴趣点(points of interest,POI)进行分析,识别城市功能区,并结合出租车轨迹数据进行时空挖掘,定量分析典型城市功能区交通吸引规律及其相互作用强度和方向。以北京市五环内主城区为例进行分析,可得:(1)该方法可以识别典型功能区西单、国贸、中关村是以商业为主的混合城市功能区,望京是以居住为主的混合功能区,且居民通勤出行特征明显;(2)国贸对自身的引力较强(39.4%),说明国贸区域城市功能更加齐全;(3)典型功能区对居民出行距离范围内的区域吸引力随着距离的增加而减弱,符合经验认知和地理空间衰减规律。结果表明,利用POI和移动大数据采用重尾打断分类法和核密度聚类法进行城市功能区识别与分析是可行和有效的。
文摘基于稀疏监测点的监测数据无法直接获取城市内部空气污染的高分辨率空间分布。以武汉市为例,研究了基于土地利用回归(land use regression,LUR)模型的大气PM2.5浓度高分辨率空间分布模拟。采用双变量相关分析识别出与PM2.5浓度相关性最高的4个影响因子,分别是1 000m缓冲区内道路长度,500m缓冲区内水域面积,500m缓冲区内建设用地面积以及工业污染影响。采用PM2.5月平均浓度和识别出的影响因子连同气象条件(月平均温度和月降水量)进行多元线性回归分析,相关系数R2达到0.905,调整后的R2为0.885。在研究区建立均匀格网(2km×2km),利用得到的LUR方程计算格点PM2.5浓度值,应用空间插值制成武汉市主城区夏季PM2.5浓度空间分布模拟图。模拟结果显示,主城区有三个PM2.5浓度高值中心,分别为青山工业区、江北工业区和汉口汉西建材市场区域。汉阳南部、武昌南部的大型湖泊和水域面积比例较大的区域表现为两个PM2.5浓度低值中心。