Circuit partitioning plays a crucial role in very large-scale integrated circuit (VLSI) physical design automation. With current trends, partitioning with multiple objectives which includes cutsize, area, delay, and p...Circuit partitioning plays a crucial role in very large-scale integrated circuit (VLSI) physical design automation. With current trends, partitioning with multiple objectives which includes cutsize, area, delay, and power obtains much concentration. In this paper, a multi-objective greedy randomized adaptive search procedure (GRASP) is presented for simultaneous cutsize and circuit delay minimization. Each objective is assigned a preference or weight to direct the search procedure and generate a variety of efficient solutions by changing the preference. To get a good initial partition with minimal cutsize and circuit delay, the gain of each module in a circuit is computed by considering both signal nets and circuit delay. The performance of the proposed algorithm is evaluated on a standard set of partitioning benchmark. The experimental results show that the proposed algorithm can generate a set of Pareto optimal solutions and is efficient for tackling multi-objective circuit partitioning.展开更多
基金National Natural Science Foudation of China (No. 61070020 )Research Foundation for Doctoral Program of Ministry of Education,China (No. 20093514110004)Foundations of Education Department of Fujian Province,China (No. JA10284,No. JB07283)
文摘Circuit partitioning plays a crucial role in very large-scale integrated circuit (VLSI) physical design automation. With current trends, partitioning with multiple objectives which includes cutsize, area, delay, and power obtains much concentration. In this paper, a multi-objective greedy randomized adaptive search procedure (GRASP) is presented for simultaneous cutsize and circuit delay minimization. Each objective is assigned a preference or weight to direct the search procedure and generate a variety of efficient solutions by changing the preference. To get a good initial partition with minimal cutsize and circuit delay, the gain of each module in a circuit is computed by considering both signal nets and circuit delay. The performance of the proposed algorithm is evaluated on a standard set of partitioning benchmark. The experimental results show that the proposed algorithm can generate a set of Pareto optimal solutions and is efficient for tackling multi-objective circuit partitioning.