期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
弹性网络核极限学习机的多标记学习算法 被引量:5
1
作者 王一宾 裴根 程玉胜 《智能系统学报》 CSCD 北大核心 2019年第4期831-842,共12页
将正则化极限学习机或者核极限学习机理论应用到多标记分类中,一定程度上提高了算法的稳定性。但目前这些算法关于损失函数添加的正则项都基于L2正则,导致模型缺乏稀疏性表达。同时,弹性网络正则化既保证模型鲁棒性且兼具模型稀疏化学习... 将正则化极限学习机或者核极限学习机理论应用到多标记分类中,一定程度上提高了算法的稳定性。但目前这些算法关于损失函数添加的正则项都基于L2正则,导致模型缺乏稀疏性表达。同时,弹性网络正则化既保证模型鲁棒性且兼具模型稀疏化学习,但结合弹性网络的极限学习机如何解决多标记问题鲜有研究。基于此,本文提出一种对核极限学习机添加弹性网络正则化的多标记学习算法。首先,对多标记数据特征空间使用径向基核函数映射;随后,对核极限学习机损失函数施加弹性网络正则项;最后,采用坐标下降法迭代求解输出权值以得到最终预测标记。通过对比试验和统计分析表明,提出的算法具有更好的性能表现。 展开更多
关键词 多标记学习 核极限学习机 正则化 弹性网络 径向基函数 坐标下降法
下载PDF
回归核极限学习机的多标记学习算法 被引量:5
2
作者 王一宾 程玉胜 +1 位作者 何月 裴根 《模式识别与人工智能》 EI CSCD 北大核心 2018年第5期419-430,共12页
基于极限学习机(ELM)的多标记学习算法多使用ELM分类模式,忽略标记之间存在的相关性.为此,文中提出结合关联规则与回归核极限学习机的多标记学习算法(ML-ASRKELM).首先通过关联规则分析标记空间,提取标记之间的规则向量.然后通过提出的... 基于极限学习机(ELM)的多标记学习算法多使用ELM分类模式,忽略标记之间存在的相关性.为此,文中提出结合关联规则与回归核极限学习机的多标记学习算法(ML-ASRKELM).首先通过关联规则分析标记空间,提取标记之间的规则向量.然后通过提出的多标记回归核极限学习机(ML-RKELM)得出预测结果.若规则向量不为空,将规则向量与预测结果运算得出最终预测结果,否则最终结果即为ML-RKELM的预测结果.对比实验表明MLASRKELM与ML-RKELM性能较优,统计假设检验进一步说明文中算法的有效性. 展开更多
关键词 多标记学习 极限学习机(ELM) 标记相关性 关联规则 回归拟合
下载PDF
结合均值漂移的多示例多标记学习改进算法 被引量:4
3
作者 王一宾 程玉胜 裴根 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期422-435,共14页
多示例多标记学习在多语义对象处理中克服了多示例学习和多标记学习的缺点,成功应用于文本分类、图像识别标注、基因数据分析等任务中.其中基于退化策略的多示例多标记学习算法,多利用K-Medoids聚类将多示例多标记退化成单示例多标记,... 多示例多标记学习在多语义对象处理中克服了多示例学习和多标记学习的缺点,成功应用于文本分类、图像识别标注、基因数据分析等任务中.其中基于退化策略的多示例多标记学习算法,多利用K-Medoids聚类将多示例多标记退化成单示例多标记,但此种退化方式过于简化多语义和复杂语义的对象,并未考虑示例间的相关性,导致退化过程中的信息削弱甚至丢失.针对这一问题,提出了结合均值漂移的多示例多标记学习改进算法(MultiInstance Multi-Label with Mean Shift,MIMLMS),将高斯核函数和权值加入均值漂移中.权值的加入保证了示例之间的相关性得以保留,而将多示例集合加入高斯核函数就可利用核密度估计和梯度下降法求解退化过程最优解,最终以误差平方和为分类目标函数,建立多示例多标记分类模型.算法在基准的多示例多标记测试数据集中的实验结果,验证了算法的良好分类效果及算法的有效性和可靠性. 展开更多
关键词 多示例多标记学习 均值漂移算法 高斯核函数 核密度估计 梯度下降法
下载PDF
基于核极限学习机的标记分布学习 被引量:3
4
作者 王一宾 田文泉 +1 位作者 程玉胜 裴根 《计算机工程与应用》 CSCD 北大核心 2018年第24期128-135,共8页
标记分布学习作为一种新的学习范式,利用最大熵模型构造的专用化算法能够很好地解决某些标记多样性问题,但是计算量巨大。基于此,引入运行速度快、稳定性更高的核极限学习机模型,提出基于核极限学习机的标记分布学习算法(KELM-LDL)。首... 标记分布学习作为一种新的学习范式,利用最大熵模型构造的专用化算法能够很好地解决某些标记多样性问题,但是计算量巨大。基于此,引入运行速度快、稳定性更高的核极限学习机模型,提出基于核极限学习机的标记分布学习算法(KELM-LDL)。首先在极限学习机算法中通过RBF核函数将特征映射到高维空间,然后对原标记空间建立KELM回归模型求得输出权值,最后通过模型计算预测未知样本的标记分布。与现有算法在各领域不同规模数据集的实验表明,实验结果均优于多个对比算法,统计假设检验进一步说明KELM-LDL算法的有效性和稳定性。 展开更多
关键词 标记分布学习 极限学习机 回归拟合 核函数
下载PDF
非平衡化标签补全核极限学习机多标签学习 被引量:3
5
作者 程玉胜 赵大卫 +1 位作者 王一宾 裴根 《电子学报》 EI CAS CSCD 北大核心 2019年第3期719-725,共7页
目前众多的研究者通常直接将标签置信度矩阵作为先验知识直接加入到分类模型中,并没有考虑未标注先验知识对标签集质量的影响.基于此,引入非平衡参数的方法,将先验知识获得的基础置信度矩阵进行非平衡化,从而提出一种非平衡化的标签补... 目前众多的研究者通常直接将标签置信度矩阵作为先验知识直接加入到分类模型中,并没有考虑未标注先验知识对标签集质量的影响.基于此,引入非平衡参数的方法,将先验知识获得的基础置信度矩阵进行非平衡化,从而提出一种非平衡化的标签补全的核极限学习机多标签学习算法(KELM-NeLC):首先使用信息熵计算标签之间的相关关系得到标签置信度矩阵,然后利用非平衡参数方法对基础的标签置信度矩阵进行改进,构建出一个非平衡的标签补全矩阵,最后为了学习获得更加准确的标签置信度矩阵,将非平衡化的标签补全矩阵与核极限学习机进行联合学习,依此解决多标签分类问题.提出的算法在公开的多个基准多标签数据集中的实验结果表明,KELM-NeLC算法较其他对比的多标签学习算法有一定优势,使用统计假设检验进一步说明所提出算法的有效性. 展开更多
关键词 机器学习 多标签学习 标签相关性 信息熵 标签补全 极限学习机
下载PDF
特征特定标记关联挖掘的类属属性学习 被引量:3
6
作者 程玉胜 张露露 +1 位作者 王一宾 裴根 《计算机研究与发展》 EI CSCD 北大核心 2021年第1期34-47,共14页
在多标记分类中,某个标记可能只由其自身的某些特有属性决定,这些特定属性称之为类属属性.利用类属属性进行多标记分类,可以有效避免某些无用特征影响构建分类模型的性能.然而类属属性算法仅从标记角度去提取重要特征,而忽略了从特征角... 在多标记分类中,某个标记可能只由其自身的某些特有属性决定,这些特定属性称之为类属属性.利用类属属性进行多标记分类,可以有效避免某些无用特征影响构建分类模型的性能.然而类属属性算法仅从标记角度去提取重要特征,而忽略了从特征角度去提取重要标记.事实上,如果能从特征角度提前关注某些标记,更容易获取这些标记的特有属性.基于此,提出了一种新型类属属性学习的多标记分类算法,将从特征层面提取重要标记与从标记层面提取重要特征进行双向联合学习.首先,为了保证模型求解速度与精度都较为合理,采用极限学习机构建学习模型.随后,将弹性网络正则化理论添加到极限学习机损失函数中,使用互信息构建特征标记相关性矩阵作为L 2正则化项,而L 1正则化项即提取类属属性.该学习模型改进了类属属性在多标记学习中的不足,通过在标准多标记数据集上与多个先进算法对比,实验结果表明了所提模型的合理性和有效性. 展开更多
关键词 多标记学习 类属属性 特征特定标记 极限学习机 标记相关性
下载PDF
基于Qt的Python代码迷惑器的设计与实现 被引量:3
7
作者 王一宾 裴根 《安庆师范大学学报(自然科学版)》 2017年第3期56-61,共6页
Python源代码编译出的字节码十分便于反编译,使用代码迷惑技术可以有效解决此问题。通过使用Qt编程框架对Python源代码进行词法分析和语法分析,用大写字母"O"和数字"0"组成随机编码将源程序中的模块名、类名、自定... Python源代码编译出的字节码十分便于反编译,使用代码迷惑技术可以有效解决此问题。通过使用Qt编程框架对Python源代码进行词法分析和语法分析,用大写字母"O"和数字"0"组成随机编码将源程序中的模块名、类名、自定义函数名和标识符变量名进行迷惑变换,实现一款Python代码迷惑器。实验对比表明,该Python迷惑器具有图形用户界面、代码迷惑性强、代码执行时间开销小和迷惑不可逆等特点。 展开更多
关键词 代码迷惑器 QT PYTHON 软件安全
下载PDF
基于标记密度分类间隔面的组类属属性学习 被引量:1
8
作者 王一宾 裴根 程玉胜 《电子与信息学报》 EI CSCD 北大核心 2020年第5期1179-1187,共9页
类属属性学习避免相同属性预测全部标记,是一种提取各标记独有属性进行分类的一种框架,在多标记学习中得到广泛的应用。而针对标记维度较大、标记分布密度不平衡等问题,已有的基于类属属性的多标记学习算法普遍时间消耗大、分类精度低... 类属属性学习避免相同属性预测全部标记,是一种提取各标记独有属性进行分类的一种框架,在多标记学习中得到广泛的应用。而针对标记维度较大、标记分布密度不平衡等问题,已有的基于类属属性的多标记学习算法普遍时间消耗大、分类精度低。为提高多标记分类性能,该文提出一种基于标记密度分类间隔面的组类属属性学习(GLSFL-LDCM)方法。首先,使用余弦相似度构建标记相关性矩阵,通过谱聚类将标记分组以提取各标记组的类属属性,减少计算全部标记类属属性的时间消耗。然后,计算各标记密度以更新标记空间矩阵,将标记密度信息加入原标记中,扩大正负标记的间隔,通过标记密度分类间隔面的方法有效解决标记分布密度不平衡问题。最后,通过将组类属属性和标记密度矩阵输入极限学习机以得到最终分类模型。对比实验充分验证了该文所提算法的可行性与稳定性。 展开更多
关键词 多标记分类 标记密度 组类属属性 极限学习机 分类间隔面
下载PDF
基于DEC算法的多标记学习
9
作者 王一宾 李闪闪 裴根 《安庆师范大学学报(自然科学版)》 2018年第2期31-35,共5页
由于多标记学习中的"维度灾难"问题,鉴于判别嵌入式聚类(DEC)算法对数据降维的特点,本文提出了基于DEC算法的多标记学习。该算法在多标记数据集作分类处理之前,采取DEC算法对多标记数据集进行维度约简,从而降低算法复杂度、... 由于多标记学习中的"维度灾难"问题,鉴于判别嵌入式聚类(DEC)算法对数据降维的特点,本文提出了基于DEC算法的多标记学习。该算法在多标记数据集作分类处理之前,采取DEC算法对多标记数据集进行维度约简,从而降低算法复杂度、提高分类性能。实验结果表明,这种基于DEC算法的多标记学习是有效的。 展开更多
关键词 DEC算法 多标记学习 维度约简 分类性能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部