A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations...A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations of dust particles are coupled.The electrical interaction between charged dust particles is considered in the model.The time evolution of radial distributions of dust density,plasma density,the radial component of electric field and the forces acting on dust particles when dust density tends to be stable,are obtained and analyzed under different discharge currents and dust particle radii.It is shown that the dust density structure is determined mainly by the radial electrostatic force,thermophoretic force and ion drag force in the discharge tube,and both discharge current and dust particle radius have an obvious effect on the transport processes of dust particles.The dust particles gather in the central region of the discharge tube for low discharge current and small dust radius,then dust voids are formed and become wider when the discharge current and dust radius increase.The plasma parameters in the dust gathering region are obviously affected by the dust particles due to the charging processes of electrons and ions to the dust surface.展开更多
"工作室物理"将学生的探索研究融入到课堂教学中,通过演示实验和教学软件激发学生主动学习,也叫作TEAL(Technology Enabled Active Learning)。TEAL充分体现了"以学生为中心"的教学理念,充分发挥学生自主学习的积..."工作室物理"将学生的探索研究融入到课堂教学中,通过演示实验和教学软件激发学生主动学习,也叫作TEAL(Technology Enabled Active Learning)。TEAL充分体现了"以学生为中心"的教学理念,充分发挥学生自主学习的积极性。而课堂演示实验直观、真实、可信度高,学生可直接参与其中,起到了教与学的互动。由学生自己做演示实验、分析实验现象、总结实验规律,使学生从被动获取知识到主动获取知识,从而锻炼了思维能力,是培养学生创新思维、创造能力以及提升学生实践能力的最好的手段和途径。展开更多
Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed u...Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed under well-defined discharge conditions(chamber geometry,input power,AC power frequency,and external electrical characteristics).The problems encountered in describing the characteristics of AC discharge in many probe diagnostic methods were addressed by using an improved probe diagnostics design.This design can also be applied to the measurement of plasma parameters in many kinds of plasma sources in which the probe potential fluctuates with the discharge current.Several parameters of the hollow electrode AC helium discharge plasma were measured,including the plasma density,electron temperature,plasma density profiles,and changes in plasma density at different input power values and helium pressures.The characteristics of the coaxial gridded hollow electrode plasma determined by the experiments are suitable for comparison with plasma simulations,and for use in many applications of hollow cathode plasma.展开更多
In the presence of an applied static and uniform magnetic field, a cylindrical Kadomtsev-Petviashivili equation is derived for a relativistic electromagnetic solitary wave propagating in collisionless plasma consistin...In the presence of an applied static and uniform magnetic field, a cylindrical Kadomtsev-Petviashivili equation is derived for a relativistic electromagnetic solitary wave propagating in collisionless plasma consisting electrons, positrons, and ions in the case of weak relativistic limit. This equation is solved in a stationary frame to obtain explicit expression for the velocity, amplitude and width of solitons. The amplitude of the solitary wave has a maximum value at a critical αc of the ratio of the ion equilibrium density to the electron one, and it increases as the applied magnetic field becomes larger.展开更多
基金supported by the Stable-Support Scientific Project of China Research Institute of Radiowave Propagation(No.132101W07)National Natural Science Foundation of China(No.12105251)National Key Laboratory Foundation Electromagnetic Environment(Nos.A382101001,A382101002 and A152101731-C02).
文摘A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations of dust particles are coupled.The electrical interaction between charged dust particles is considered in the model.The time evolution of radial distributions of dust density,plasma density,the radial component of electric field and the forces acting on dust particles when dust density tends to be stable,are obtained and analyzed under different discharge currents and dust particle radii.It is shown that the dust density structure is determined mainly by the radial electrostatic force,thermophoretic force and ion drag force in the discharge tube,and both discharge current and dust particle radius have an obvious effect on the transport processes of dust particles.The dust particles gather in the central region of the discharge tube for low discharge current and small dust radius,then dust voids are formed and become wider when the discharge current and dust radius increase.The plasma parameters in the dust gathering region are obviously affected by the dust particles due to the charging processes of electrons and ions to the dust surface.
文摘"工作室物理"将学生的探索研究融入到课堂教学中,通过演示实验和教学软件激发学生主动学习,也叫作TEAL(Technology Enabled Active Learning)。TEAL充分体现了"以学生为中心"的教学理念,充分发挥学生自主学习的积极性。而课堂演示实验直观、真实、可信度高,学生可直接参与其中,起到了教与学的互动。由学生自己做演示实验、分析实验现象、总结实验规律,使学生从被动获取知识到主动获取知识,从而锻炼了思维能力,是培养学生创新思维、创造能力以及提升学生实践能力的最好的手段和途径。
基金National Natural Science Foundation of China(No.11775062).
文摘Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed under well-defined discharge conditions(chamber geometry,input power,AC power frequency,and external electrical characteristics).The problems encountered in describing the characteristics of AC discharge in many probe diagnostic methods were addressed by using an improved probe diagnostics design.This design can also be applied to the measurement of plasma parameters in many kinds of plasma sources in which the probe potential fluctuates with the discharge current.Several parameters of the hollow electrode AC helium discharge plasma were measured,including the plasma density,electron temperature,plasma density profiles,and changes in plasma density at different input power values and helium pressures.The characteristics of the coaxial gridded hollow electrode plasma determined by the experiments are suitable for comparison with plasma simulations,and for use in many applications of hollow cathode plasma.
文摘In the presence of an applied static and uniform magnetic field, a cylindrical Kadomtsev-Petviashivili equation is derived for a relativistic electromagnetic solitary wave propagating in collisionless plasma consisting electrons, positrons, and ions in the case of weak relativistic limit. This equation is solved in a stationary frame to obtain explicit expression for the velocity, amplitude and width of solitons. The amplitude of the solitary wave has a maximum value at a critical αc of the ratio of the ion equilibrium density to the electron one, and it increases as the applied magnetic field becomes larger.