期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自适应噪声完全集合经验模态分解算法和Hurst指数的地震数据去噪方法 被引量:2
1
作者 毛世榕 史水平 +5 位作者 玉壮基 苏梅艳 李莎 何嘉 幸符 张清 《地震学报》 CSCD 北大核心 2023年第2期258-270,共13页
在地震观测中,地震数据中普遍包含有噪声信号。由于噪声信号的干扰,地震分析的效率会受到不同程度的影响。传统的去噪方法通常需要噪声的先验知识,并且滤波时会造成部分有效信号丢失。针对这一问题,本文提出一种将自适应噪声完全集合经... 在地震观测中,地震数据中普遍包含有噪声信号。由于噪声信号的干扰,地震分析的效率会受到不同程度的影响。传统的去噪方法通常需要噪声的先验知识,并且滤波时会造成部分有效信号丢失。针对这一问题,本文提出一种将自适应噪声完全集合经验模态分解(CEEMDAN)算法与Hurst指数相结合的地震数据去噪方法。首先通过CEEMDAN方法将信号分解为一系列本征模函数(IMF),然后利用Hurst指数对滤波后的IMF分量进行识别,最后对地震数据IMF分量进行重构,从而实现数据去噪。与传统方法的去噪效果对比表明,本文方法可将低信噪比波形的去噪效果提高32%,将高信噪比波形的去噪效果提高6倍。同时对地磁数据的去噪结果表明,本文方法能够较完整地将地铁噪声从地磁信号波形中滤除。 展开更多
关键词 地震数据去噪 地磁数据去噪 自适应噪声完全集合经验模态分解 HURST指数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部