期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于变量聚类的BP神经网络术后生存期预测模型
被引量:
3
1
作者
孟濬
邓晓雨
虞
捷
舟
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2018年第12期2365-2371,共7页
针对结直肠癌患者术后生存期预测,基于模糊C均值(FCM)聚类算法,提出一种结合场景认知和隶属度排序的变量聚类方法,对结直肠癌患者样本进行降维,并筛选出6个特征变量.结合BP神经网络,建立一个结直肠癌患者术后生存期预测模型.为了验证该...
针对结直肠癌患者术后生存期预测,基于模糊C均值(FCM)聚类算法,提出一种结合场景认知和隶属度排序的变量聚类方法,对结直肠癌患者样本进行降维,并筛选出6个特征变量.结合BP神经网络,建立一个结直肠癌患者术后生存期预测模型.为了验证该模型的有效性,利用主成分分析(PCA)对样本进行降维,并训练BP神经网络,对比FCM模型及PCA模型的预测准确率.结果显示,基于FCM变量聚类的BP神经网络模型预测准确率更高,所提出的变量聚类方法能够有效筛选出对于生存期有相关性和解释性的变量,从而提高BP神经网络模型的预测准确率.
展开更多
关键词
结直肠癌
生存期预测
变量聚类
模糊均值(FCM)聚类
BP神经网络
主成分分析(PCA)
下载PDF
职称材料
题名
基于变量聚类的BP神经网络术后生存期预测模型
被引量:
3
1
作者
孟濬
邓晓雨
虞
捷
舟
机构
浙江大学电气工程学院
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2018年第12期2365-2371,共7页
基金
浙江省公益性技术应用研究计划资助项目(2017C31079)
文摘
针对结直肠癌患者术后生存期预测,基于模糊C均值(FCM)聚类算法,提出一种结合场景认知和隶属度排序的变量聚类方法,对结直肠癌患者样本进行降维,并筛选出6个特征变量.结合BP神经网络,建立一个结直肠癌患者术后生存期预测模型.为了验证该模型的有效性,利用主成分分析(PCA)对样本进行降维,并训练BP神经网络,对比FCM模型及PCA模型的预测准确率.结果显示,基于FCM变量聚类的BP神经网络模型预测准确率更高,所提出的变量聚类方法能够有效筛选出对于生存期有相关性和解释性的变量,从而提高BP神经网络模型的预测准确率.
关键词
结直肠癌
生存期预测
变量聚类
模糊均值(FCM)聚类
BP神经网络
主成分分析(PCA)
Keywords
colorectal cancer
survival forecast
variable cluster
fuzzy C-means(FCM)cluster
BP neural network
principal component analysis(PCA)
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于变量聚类的BP神经网络术后生存期预测模型
孟濬
邓晓雨
虞
捷
舟
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2018
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部