期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种具有缺失数据的无监督ReliefF特征选择算法 被引量:3
1
作者 宋燕 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1441-1448,共8页
目前,大多数特征选择算法是针对完整数据集的.而面对缺失及无标签数据集时,多数特征选择算法是无效的.为了解决缺失及无标签数据集的特征选择问题,本文提出了一种基于加权FCM,融合互信息同时交替更新特征权重的ReliefF算法(WFCM-IRelief... 目前,大多数特征选择算法是针对完整数据集的.而面对缺失及无标签数据集时,多数特征选择算法是无效的.为了解决缺失及无标签数据集的特征选择问题,本文提出了一种基于加权FCM,融合互信息同时交替更新特征权重的ReliefF算法(WFCM-IReliefF,Improved ReliefF Based on WFCM).首先,对均值预填补的完整数据集利用FCM算法进行无监督学习,从而找到样本近邻;其次,将ReliefF算法计算得到的特征权重代入加权FCM算法中,解决原始空间与特征空间的不同造成的聚类效果不佳的问题,通过加权FCM算法和ReliefF算法交替更新得到关键特征;再者,对特征选择后的数据集利用矩阵分解技术改善对缺失数据的预填补.最后,利用多个UCI公共数据集的对比实验,验证了本文提出的算法与其他对比算法相比有较为满意的效果. 展开更多
关键词 特征选择 矩阵分解 模糊C均值聚类 无监督学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部