期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度卷积神经网络的交通标志识别方法
被引量:
3
1
作者
仲会娟
蔡
清
泳
《延边大学学报(自然科学版)》
CAS
2020年第4期359-365,共7页
为了提升交通标志自动识别的精度,提出一种基于多尺度CNN的交通标志识别方法(TSR-MSCNN算法).该方法采用三阶段卷积神经网络,融合了低阶、中阶和高阶3种不同尺度的特征,并串联了多个小卷积层用以代替单个较大卷积层.通过对全连接层的神...
为了提升交通标志自动识别的精度,提出一种基于多尺度CNN的交通标志识别方法(TSR-MSCNN算法).该方法采用三阶段卷积神经网络,融合了低阶、中阶和高阶3种不同尺度的特征,并串联了多个小卷积层用以代替单个较大卷积层.通过对全连接层的神经元个数、Dropout参数、卷积核尺寸等网络超参数进行选比实验,获得了最佳的网络超参数.利用德国交通标志基准数据库(GTSRB)对不同算法进行测试表明,本文提出的算法在较小的网络参数量下能够有效提取交通标志特征,获取的识别准确率达到99.76%,且显著优于传统卷积神经网络方法和多尺度特征方法的识别准确率,因此本文算法在图像识别领域有良好的应用价值.
展开更多
关键词
交通标志识别
卷积神经网络
TSR-MSCNN
多尺度特征
下载PDF
职称材料
题名
基于多尺度卷积神经网络的交通标志识别方法
被引量:
3
1
作者
仲会娟
蔡
清
泳
机构
阳光学院人工智能学院
出处
《延边大学学报(自然科学版)》
CAS
2020年第4期359-365,共7页
基金
福建省中青年教师教育科研项目(JT180724)
电子信息与通信技术慕课应用型团队项目(2019sjtd01)。
文摘
为了提升交通标志自动识别的精度,提出一种基于多尺度CNN的交通标志识别方法(TSR-MSCNN算法).该方法采用三阶段卷积神经网络,融合了低阶、中阶和高阶3种不同尺度的特征,并串联了多个小卷积层用以代替单个较大卷积层.通过对全连接层的神经元个数、Dropout参数、卷积核尺寸等网络超参数进行选比实验,获得了最佳的网络超参数.利用德国交通标志基准数据库(GTSRB)对不同算法进行测试表明,本文提出的算法在较小的网络参数量下能够有效提取交通标志特征,获取的识别准确率达到99.76%,且显著优于传统卷积神经网络方法和多尺度特征方法的识别准确率,因此本文算法在图像识别领域有良好的应用价值.
关键词
交通标志识别
卷积神经网络
TSR-MSCNN
多尺度特征
Keywords
traffic sign recognition
convolutional neural network
TSR-MSCNN
multi-scale features
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度卷积神经网络的交通标志识别方法
仲会娟
蔡
清
泳
《延边大学学报(自然科学版)》
CAS
2020
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部