期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度卷积神经网络的交通标志识别方法 被引量:3
1
作者 仲会娟 《延边大学学报(自然科学版)》 CAS 2020年第4期359-365,共7页
为了提升交通标志自动识别的精度,提出一种基于多尺度CNN的交通标志识别方法(TSR-MSCNN算法).该方法采用三阶段卷积神经网络,融合了低阶、中阶和高阶3种不同尺度的特征,并串联了多个小卷积层用以代替单个较大卷积层.通过对全连接层的神... 为了提升交通标志自动识别的精度,提出一种基于多尺度CNN的交通标志识别方法(TSR-MSCNN算法).该方法采用三阶段卷积神经网络,融合了低阶、中阶和高阶3种不同尺度的特征,并串联了多个小卷积层用以代替单个较大卷积层.通过对全连接层的神经元个数、Dropout参数、卷积核尺寸等网络超参数进行选比实验,获得了最佳的网络超参数.利用德国交通标志基准数据库(GTSRB)对不同算法进行测试表明,本文提出的算法在较小的网络参数量下能够有效提取交通标志特征,获取的识别准确率达到99.76%,且显著优于传统卷积神经网络方法和多尺度特征方法的识别准确率,因此本文算法在图像识别领域有良好的应用价值. 展开更多
关键词 交通标志识别 卷积神经网络 TSR-MSCNN 多尺度特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部