期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于情感分析与TextRank的负面在线评论关键词抽取 被引量:14
1
作者 庞庆华 +1 位作者 周斌 付眸 《情报科学》 CSSCI 北大核心 2022年第5期111-117,共7页
【目的/意义】负面在线评论已成为商家重要的经营决策信息,对了解客户消费满意度、改善产品和服务质量具有重要意义。【方法/过程】该文将情感分析和关键词抽取相结合,提出一种基于BiGRU-CNN和TextRank的在线评论负面关键词抽取方法,即... 【目的/意义】负面在线评论已成为商家重要的经营决策信息,对了解客户消费满意度、改善产品和服务质量具有重要意义。【方法/过程】该文将情感分析和关键词抽取相结合,提出一种基于BiGRU-CNN和TextRank的在线评论负面关键词抽取方法,即首先对在线评论文本数据进行清洗,然后构建BiGRU-CNN情感分类模型对在线评论进行情感分析,最后采取TextRank方法抽取情感分析得到的负面评论中的关键词。利用这种方法,对十个产品与服务类别的6万余条消费者在线评论文本数据进行实证分析。【结果/结论】实验结果表明,该方法能准确判别客户负面在线评论情感倾向,F1值达92.41%,并且负面在线评论关键词抽取结果能较好帮助商家完善产品质量和服务。【创新/局限】提出一种结合双向GRU和CNN结合的情感分类模型,在此基础上基于TextRank方法抽取情感分析得到的负面评论中的关键词,进一步提升模型对于在线评论情感分析的准确性。 展开更多
关键词 负面评论 情感分析 TextRank 深度学习 模型构建 关键词抽取
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部