针对室内环境结构相似的特点,提出一种基于图像序列拓扑关系的移动机器人全局定位算法.首先,提取图像的Gist描述子,并提出一种局部极值算法,将环境划分成若干组不同的图像序列.然后,使用ESN(echo state network)对每一组图像序列在时间...针对室内环境结构相似的特点,提出一种基于图像序列拓扑关系的移动机器人全局定位算法.首先,提取图像的Gist描述子,并提出一种局部极值算法,将环境划分成若干组不同的图像序列.然后,使用ESN(echo state network)对每一组图像序列在时间上进行双序训练,提取鲁棒的图像序列特征,再利用空间上的双向匹配策略实现图像序列特征的匹配.最后,采用HMM(hidden Markov model)对图像序列间的拓扑关系进行建模,将移动机器人全局定位问题转化成有向无环图中最长路径求解问题,并通过实验对该图像序列划分和序列建模方法进行验证.与基于单帧图像匹配的算法、SeqSLAM算法以及Fast-SeqSLAM算法相比,该算法在室内走廊环境和办公环境中均可实现100%的定位.特别是在室内办公环境中,机器人仅需要运动0.80 m便可以对自身进行准确定位.实验结果表明,该算法具有较强的鲁棒性、较高的定位准确性和定位效率.展开更多