目的在施工现场,安全帽是最为常见和实用的个人防护用具,能够有效防止和减轻意外带来的头部伤害。但在施工现场的安全帽佩戴检测任务中,经常出现难以检测到小目标,或因为复杂多变的环境因素导致检测准确率降低等情况。针对这些问题,提...目的在施工现场,安全帽是最为常见和实用的个人防护用具,能够有效防止和减轻意外带来的头部伤害。但在施工现场的安全帽佩戴检测任务中,经常出现难以检测到小目标,或因为复杂多变的环境因素导致检测准确率降低等情况。针对这些问题,提出一种融合环境特征与改进YOLOv4(you only look once version 4)的安全帽佩戴检测方法。方法为补充卷积池化等过程中丢失的特征,在保证YOLOv4得到的3种不同大小的输出特征图与原图经过特征提取得到的特征图感受野一致的情况下,将两者相加,融合高低层特征,捕捉更多细节信息;对融合后的特征图采用3×3卷积操作,以减小特征图融合后的混叠效应,保证特征稳定性;为适应施工现场的各种环境,利用多种数据增强方式进行环境模拟,并采用对抗训练方法增强模型的泛化能力和鲁棒性。结果提出的改进YOLOv4方法在开源安全帽佩戴检测数据集(safety helmet wearing dataset,SHWD)上进行测试,平均精度均值(mean average precision,mAP)达到91.55%,较当前流行的几种目标检测算法性能有所提升,其中相比于YOLOv4,m AP提高了5.2%。此外,改进YOLOv4方法在融合环境特征进行数据增强后,mAP提高了4.27%,在各种真实环境条件下进行测试时都有较稳定的表现。结论提出的融合环境特征与改进YOLOv4的安全帽佩戴检测方法,以改进模型和数据增强的方式提升模型准确率、泛化能力和鲁棒性,为安全帽佩戴检测提供了有效保障。展开更多
本研究在睁眼(eyes-open,EO)和闭眼(eyes-closed,EC)两种静息态下提取了45位健康被试的脑功能参数比率低频振幅(fractional amplitude of low frequency fluctuation,fALFF)和局部一致性(regional homogeneity,ReHo)数据,比较并分析了...本研究在睁眼(eyes-open,EO)和闭眼(eyes-closed,EC)两种静息态下提取了45位健康被试的脑功能参数比率低频振幅(fractional amplitude of low frequency fluctuation,fALFF)和局部一致性(regional homogeneity,ReHo)数据,比较并分析了基于线性核的支持向量机(SVM)、基于RBF核的支持向量机、朴素贝叶斯、决策树、随机森林和自适应增强(Adaboost)6种机器学习方法在数据上的分类效果.实验表明,对单一特征数据分类时,朴素贝叶斯算法对fALFF数据的分类效果最好,线性核的SVM算法对ReHo数据的分类效果最好;对fALFF和ReHo数据相融合的多层次特征数据分类时,朴素贝叶斯算法的分类效果最好.此外,本研究对单一特征数据与多层次特征数据在6种机器学习方法上进行分类比较,结果表明利用多层次特征数据时,基于RBF核的SVM,朴素贝叶斯和随机森林算法的分类效果有所提升.本研究基于不同机器学习方法和不同层次特征数据的分类比较,为EO和EC静息态脑功能活动和其他脑病理的研究提供了相关的参考依据.展开更多
文摘目的在施工现场,安全帽是最为常见和实用的个人防护用具,能够有效防止和减轻意外带来的头部伤害。但在施工现场的安全帽佩戴检测任务中,经常出现难以检测到小目标,或因为复杂多变的环境因素导致检测准确率降低等情况。针对这些问题,提出一种融合环境特征与改进YOLOv4(you only look once version 4)的安全帽佩戴检测方法。方法为补充卷积池化等过程中丢失的特征,在保证YOLOv4得到的3种不同大小的输出特征图与原图经过特征提取得到的特征图感受野一致的情况下,将两者相加,融合高低层特征,捕捉更多细节信息;对融合后的特征图采用3×3卷积操作,以减小特征图融合后的混叠效应,保证特征稳定性;为适应施工现场的各种环境,利用多种数据增强方式进行环境模拟,并采用对抗训练方法增强模型的泛化能力和鲁棒性。结果提出的改进YOLOv4方法在开源安全帽佩戴检测数据集(safety helmet wearing dataset,SHWD)上进行测试,平均精度均值(mean average precision,mAP)达到91.55%,较当前流行的几种目标检测算法性能有所提升,其中相比于YOLOv4,m AP提高了5.2%。此外,改进YOLOv4方法在融合环境特征进行数据增强后,mAP提高了4.27%,在各种真实环境条件下进行测试时都有较稳定的表现。结论提出的融合环境特征与改进YOLOv4的安全帽佩戴检测方法,以改进模型和数据增强的方式提升模型准确率、泛化能力和鲁棒性,为安全帽佩戴检测提供了有效保障。
文摘本研究在睁眼(eyes-open,EO)和闭眼(eyes-closed,EC)两种静息态下提取了45位健康被试的脑功能参数比率低频振幅(fractional amplitude of low frequency fluctuation,fALFF)和局部一致性(regional homogeneity,ReHo)数据,比较并分析了基于线性核的支持向量机(SVM)、基于RBF核的支持向量机、朴素贝叶斯、决策树、随机森林和自适应增强(Adaboost)6种机器学习方法在数据上的分类效果.实验表明,对单一特征数据分类时,朴素贝叶斯算法对fALFF数据的分类效果最好,线性核的SVM算法对ReHo数据的分类效果最好;对fALFF和ReHo数据相融合的多层次特征数据分类时,朴素贝叶斯算法的分类效果最好.此外,本研究对单一特征数据与多层次特征数据在6种机器学习方法上进行分类比较,结果表明利用多层次特征数据时,基于RBF核的SVM,朴素贝叶斯和随机森林算法的分类效果有所提升.本研究基于不同机器学习方法和不同层次特征数据的分类比较,为EO和EC静息态脑功能活动和其他脑病理的研究提供了相关的参考依据.