针对多扩展目标跟踪问题,提出了基于泊松点过程( Poisson Point Process, PPP )模型的多扩展目标跟踪的联合概率数据关联( Joint Probabilistic Data Association, JPDA )算法。首先,采用PPP对扩展目标进行测量建模,其次以“多对一”关...针对多扩展目标跟踪问题,提出了基于泊松点过程( Poisson Point Process, PPP )模型的多扩展目标跟踪的联合概率数据关联( Joint Probabilistic Data Association, JPDA )算法。首先,采用PPP对扩展目标进行测量建模,其次以“多对一”关联模型思想提出一种JPDA算法,从而计算运动目标的当前有效量测的边缘关联概率,然后结合该边缘关联概率以概率数据关联( Probability Data Association, PDA )的方式分别更新每个扩展目标的运动参数和形状参数向量,最后通过仿真实现了当扩展目标相互靠近或出现交叉时的跟踪。实验结果表明,在高杂波环境下,本文所提出的算法在计算时间和跟踪稳定上具有较明显的优势。展开更多
现有的多传感器多目标跟踪算法大都基于马尔科夫-贝叶斯模型,需要诸如目标运动、杂波、传感器检测概率等先验信息,但是在恶劣的环境中,这些先验信息不准确并导致目标跟踪精度下降。为了解决该情况下的多目标跟踪问题,我们提出了一个高...现有的多传感器多目标跟踪算法大都基于马尔科夫-贝叶斯模型,需要诸如目标运动、杂波、传感器检测概率等先验信息,但是在恶劣的环境中,这些先验信息不准确并导致目标跟踪精度下降。为了解决该情况下的多目标跟踪问题,我们提出了一个高效的分布式多目标跟踪算法,该算法通过泛洪(Flooding)共识算法在分布式网络的传感器之间迭代的传输、共享各自的量测集信息,并通过改进的密度峰值聚类(Improved Density Peaks Clustering, IDPC)算法对量测集聚类,聚类得到的簇的个数即目标的个数,簇的中心即目标的位置。我们将IDPC算法与前沿的分布式概率密度假设(probability density hypothesis, PHD)滤波器在三个场景中进行对比,实验结果证明了IDPC算法的有效性和可靠性。展开更多
文摘针对多扩展目标跟踪问题,提出了基于泊松点过程( Poisson Point Process, PPP )模型的多扩展目标跟踪的联合概率数据关联( Joint Probabilistic Data Association, JPDA )算法。首先,采用PPP对扩展目标进行测量建模,其次以“多对一”关联模型思想提出一种JPDA算法,从而计算运动目标的当前有效量测的边缘关联概率,然后结合该边缘关联概率以概率数据关联( Probability Data Association, PDA )的方式分别更新每个扩展目标的运动参数和形状参数向量,最后通过仿真实现了当扩展目标相互靠近或出现交叉时的跟踪。实验结果表明,在高杂波环境下,本文所提出的算法在计算时间和跟踪稳定上具有较明显的优势。
文摘现有的多传感器多目标跟踪算法大都基于马尔科夫-贝叶斯模型,需要诸如目标运动、杂波、传感器检测概率等先验信息,但是在恶劣的环境中,这些先验信息不准确并导致目标跟踪精度下降。为了解决该情况下的多目标跟踪问题,我们提出了一个高效的分布式多目标跟踪算法,该算法通过泛洪(Flooding)共识算法在分布式网络的传感器之间迭代的传输、共享各自的量测集信息,并通过改进的密度峰值聚类(Improved Density Peaks Clustering, IDPC)算法对量测集聚类,聚类得到的簇的个数即目标的个数,簇的中心即目标的位置。我们将IDPC算法与前沿的分布式概率密度假设(probability density hypothesis, PHD)滤波器在三个场景中进行对比,实验结果证明了IDPC算法的有效性和可靠性。