期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
应用复数法求几何轨迹方程
1
作者
范
元
柄
《苏州教育学院学报》
1995年第1期17-21,共5页
在平面解析几何中有一类较为复杂的轨迹问题常可归结为求某一定曲线C的伴随曲线方程。关于已给曲线C的伴随曲线其定义为:对于已知平面曲线C上的各点M,按某个对应法则使同一平面上的点P和它对应,即M|→P,当点M在曲线C上移动时,点P一般也...
在平面解析几何中有一类较为复杂的轨迹问题常可归结为求某一定曲线C的伴随曲线方程。关于已给曲线C的伴随曲线其定义为:对于已知平面曲线C上的各点M,按某个对应法则使同一平面上的点P和它对应,即M|→P,当点M在曲线C上移动时,点P一般也伴随着M而变动,设P点的轨迹为C~*,则称C~*为曲线C的伴随曲线。并称原曲线C上的动点M为原动点,相应的C~*上动点P称为点M的相伴(动)点。文论述了求伴随曲线方程的一般解题规律,本文进一步给出应用复数简求伴随曲线方程的解法及其常用技巧。
展开更多
关键词
伴随曲线
几何轨迹
复数法
轨迹方程
曲线方程
旋转变换法
复数乘法
原动
平面解析几何
平移变换
下载PDF
职称材料
题名
应用复数法求几何轨迹方程
1
作者
范
元
柄
出处
《苏州教育学院学报》
1995年第1期17-21,共5页
文摘
在平面解析几何中有一类较为复杂的轨迹问题常可归结为求某一定曲线C的伴随曲线方程。关于已给曲线C的伴随曲线其定义为:对于已知平面曲线C上的各点M,按某个对应法则使同一平面上的点P和它对应,即M|→P,当点M在曲线C上移动时,点P一般也伴随着M而变动,设P点的轨迹为C~*,则称C~*为曲线C的伴随曲线。并称原曲线C上的动点M为原动点,相应的C~*上动点P称为点M的相伴(动)点。文论述了求伴随曲线方程的一般解题规律,本文进一步给出应用复数简求伴随曲线方程的解法及其常用技巧。
关键词
伴随曲线
几何轨迹
复数法
轨迹方程
曲线方程
旋转变换法
复数乘法
原动
平面解析几何
平移变换
分类号
G633.6 [文化科学—教育学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
应用复数法求几何轨迹方程
范
元
柄
《苏州教育学院学报》
1995
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部