This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classificati...This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.展开更多
In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associat...In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associated with partial Lagrangians and construct its approximate conservation laws in general form.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associated with partial Lagrangians and construct its approximate conservation laws in general form.