期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于红外图像的目标检测算法分析
1
作者 成才 磨少清 +2 位作者 陈怡霖 胡海 吴思雨 《汽车实用技术》 2024年第2期59-66,共8页
针对车载红外图像细节信息表现不明显、对比度低、成像效果差等缺点导致检测效率不高的问题,文章提出了一种基于YOLOv5s改进的目标检测网络。首先在头部网络中添加一个基于注意力机制的动态探测头,其特征层间的注意力机制用于尺度感知,... 针对车载红外图像细节信息表现不明显、对比度低、成像效果差等缺点导致检测效率不高的问题,文章提出了一种基于YOLOv5s改进的目标检测网络。首先在头部网络中添加一个基于注意力机制的动态探测头,其特征层间的注意力机制用于尺度感知,空间位置间的注意力机制用于空间感知,输出通道内的注意力机制用于任务感知,这使网络更加重点关注检测任务中相关联的前景目标,提升模型目标检测头的表达能力。然后在训练时用MPDIOU替换CIOU边界框损失函数,提升模型的定位精度与效率。最后把轻量级网络FasterNet添加到颈部网络末端中的C3模块,提升模型的实时性。实验结果表明,改进后的网络模型较改进前原始网络模型的mAP提升了2.1%,模型权重大小几乎不变,满足体积小与实时性的需求,适用于车载嵌入式系统中。 展开更多
关键词 目标检测 YOLOv5s 注意力机制 损失函数 车载红外图像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部