A significant exchange bias (EB) traimng ettect has been observea in sputter deposited FeAu/FeNi bilayers, wherein the exchange field (HE) exhibits a special sign-changeable temperature dependence. Very interestin...A significant exchange bias (EB) traimng ettect has been observea in sputter deposited FeAu/FeNi bilayers, wherein the exchange field (HE) exhibits a special sign-changeable temperature dependence. Very interestingly, despite the absence of multiple easy axes in the FeAu spin glass (SG) layer, HE drops abruptly between the first and second magnetic cycles, which is followed by a more gradual continuous change in the subsequent cycles. This training behavior cannot be described by the empirical n-1/2 law because of the asymmetric magnetization reversal processes. We propose modifying Binek's model to include the asymmetric changes of the pinning SG spins at the descending and ascending branches. This new model successfully describes the EB training effect in FeAu/FeNi bilayers.展开更多
Interfacial magnetic anisotropy in a Pt/CO1-xFex/Pt multilayer is tuned by doping iron atoms into the cobalt layer. The perpendicular magnetic anisotropy and out-of-plane coercivity are found to decrease with increasi...Interfacial magnetic anisotropy in a Pt/CO1-xFex/Pt multilayer is tuned by doping iron atoms into the cobalt layer. The perpendicular magnetic anisotropy and out-of-plane coercivity are found to decrease with increasing x. For a specific x, the out-of-plane coercivity acquires a maximal value as a function of the thickness of the CoFe layer. At low temperature, the coercivity is enhanced. Small coercivity but reasonably large perpendicular magnetic anisotropy can be obtained by controlling the x and CoFe layer thickness.展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2014CB921101 and 2010CB923401)the National Natural Science Foundations of China(Grant Nos.51331004,11074112,and 11174131)
文摘A significant exchange bias (EB) traimng ettect has been observea in sputter deposited FeAu/FeNi bilayers, wherein the exchange field (HE) exhibits a special sign-changeable temperature dependence. Very interestingly, despite the absence of multiple easy axes in the FeAu spin glass (SG) layer, HE drops abruptly between the first and second magnetic cycles, which is followed by a more gradual continuous change in the subsequent cycles. This training behavior cannot be described by the empirical n-1/2 law because of the asymmetric magnetization reversal processes. We propose modifying Binek's model to include the asymmetric changes of the pinning SG spins at the descending and ascending branches. This new model successfully describes the EB training effect in FeAu/FeNi bilayers.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11074112,10974032,and 51201114)the National Basic Research Program of China (Grant Nos. 2009CB929201 and 2010CB923401)the Key Project of the Chinese Ministry of Education (Grant No. 210074)
文摘Interfacial magnetic anisotropy in a Pt/CO1-xFex/Pt multilayer is tuned by doping iron atoms into the cobalt layer. The perpendicular magnetic anisotropy and out-of-plane coercivity are found to decrease with increasing x. For a specific x, the out-of-plane coercivity acquires a maximal value as a function of the thickness of the CoFe layer. At low temperature, the coercivity is enhanced. Small coercivity but reasonably large perpendicular magnetic anisotropy can be obtained by controlling the x and CoFe layer thickness.