期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的点云配准方法
被引量:
24
1
作者
舒
程
珣
何云涛
孙庆科
《激光与光电子学进展》
CSCD
北大核心
2017年第3期123-131,共9页
点云配准是三维点云信息处理中的重要问题。传统点云配准方法计算量大,不利于实时计算与移动计算。针对传统点云配准方法存在的问题,提出了一种利用卷积神经网络进行点云配准的方法。首先计算点云的深度图像,利用卷积神经网络提取深度...
点云配准是三维点云信息处理中的重要问题。传统点云配准方法计算量大,不利于实时计算与移动计算。针对传统点云配准方法存在的问题,提出了一种利用卷积神经网络进行点云配准的方法。首先计算点云的深度图像,利用卷积神经网络提取深度图像对的特征差,将深度图像对的特征差作为全连接网络的输入并计算点云配准参数,迭代地执行上述操作直至配准误差小于可接受阈值。实验结果表明,相比传统的点云配准方法,基于卷积神经网络的点云配准方法具有所需计算量小、配准效率高、对噪声点和异常点不敏感的优点。
展开更多
关键词
图像处理
点云配准
深度学习
卷积神经网络
深度图像
原文传递
题名
基于卷积神经网络的点云配准方法
被引量:
24
1
作者
舒
程
珣
何云涛
孙庆科
机构
北京航空航天大学电子信息工程学院
河北远东通信系统工程有限公司
出处
《激光与光电子学进展》
CSCD
北大核心
2017年第3期123-131,共9页
基金
上海航天创新基金SAST(2015090)
文摘
点云配准是三维点云信息处理中的重要问题。传统点云配准方法计算量大,不利于实时计算与移动计算。针对传统点云配准方法存在的问题,提出了一种利用卷积神经网络进行点云配准的方法。首先计算点云的深度图像,利用卷积神经网络提取深度图像对的特征差,将深度图像对的特征差作为全连接网络的输入并计算点云配准参数,迭代地执行上述操作直至配准误差小于可接受阈值。实验结果表明,相比传统的点云配准方法,基于卷积神经网络的点云配准方法具有所需计算量小、配准效率高、对噪声点和异常点不敏感的优点。
关键词
图像处理
点云配准
深度学习
卷积神经网络
深度图像
Keywords
image processing
point cloud registration
deep learning
convolutional neural network
depth image
分类号
TP249 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的点云配准方法
舒
程
珣
何云涛
孙庆科
《激光与光电子学进展》
CSCD
北大核心
2017
24
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部