A fully integrated integer-N frequency synthesizer is implemented.The synthesizer is designed for low intermediate frequency (IF)ZigBee transceiver applications.Techniques used to make the loop bandwidth constant ac...A fully integrated integer-N frequency synthesizer is implemented.The synthesizer is designed for low intermediate frequency (IF)ZigBee transceiver applications.Techniques used to make the loop bandwidth constant across the whole output frequency range of the voltage controlled oscillator(VCO)are adopted to maintain phase noise optimization and loop stability.In-phase and quadrature(IQ)signals are generated by a 1/2 frequency divider at the output of the VCO.The synthesizer is fabricated in 0.18 μm radio frequency(RF) complementary metal oxide semiconductor transistor (CMOS)technology.The chip area is 1.7 mm2.The synthesizer is measured on wafer.It consumes totally 28.8 mW excluding output buffers from a supply voltage of 1.8 V.The measured phase noise is -110 and -122 dBc/Hz at the offset of 1 and 3 MHz from a 2.405 GHz carrier,respectively.The measured reference spur at a 2 MHz offset from a 2.405 GHz carrier is-48.2 dBc.The measured setting time of the synthesizer is about 160 μs.展开更多
A 5-GHz CMOS programmable frequency divider whose modulus can be varied from 2403 to 2480 for 2.4-GHz ZigBee applications is presented.The divider based on a dual-modulus prescaler(DMP) and pulse-swallow counter is ...A 5-GHz CMOS programmable frequency divider whose modulus can be varied from 2403 to 2480 for 2.4-GHz ZigBee applications is presented.The divider based on a dual-modulus prescaler(DMP) and pulse-swallow counter is designed to reduce power consumption and chip area.Implemented in the 0.18-μm mixed-signal CMOS process,the divider operates over a wide range of 1-7.4 GHz with an input signal of 7.5 dBm;the programmable divider output phase noise is -125.3 dBc/Hz at an offset of 100 kHz.The core circuit without test buffer consumes 4.3 mA current from a 1.8 V power supply and occupies a chip area of approximately 0.015 mm^2.The experimental results indicate that the programmable divider works well for its application in frequency synthesizers.展开更多
基金The National High Technology Research and Development Program of China (863 Program)(No.2007AA01Z2A7)the Scienceand Technology Program of Zhejiang Province (No.2008C16017)
文摘A fully integrated integer-N frequency synthesizer is implemented.The synthesizer is designed for low intermediate frequency (IF)ZigBee transceiver applications.Techniques used to make the loop bandwidth constant across the whole output frequency range of the voltage controlled oscillator(VCO)are adopted to maintain phase noise optimization and loop stability.In-phase and quadrature(IQ)signals are generated by a 1/2 frequency divider at the output of the VCO.The synthesizer is fabricated in 0.18 μm radio frequency(RF) complementary metal oxide semiconductor transistor (CMOS)technology.The chip area is 1.7 mm2.The synthesizer is measured on wafer.It consumes totally 28.8 mW excluding output buffers from a supply voltage of 1.8 V.The measured phase noise is -110 and -122 dBc/Hz at the offset of 1 and 3 MHz from a 2.405 GHz carrier,respectively.The measured reference spur at a 2 MHz offset from a 2.405 GHz carrier is-48.2 dBc.The measured setting time of the synthesizer is about 160 μs.
基金supported by the National High Technology Research and Development Program of China(No.2007AA01Z2A7)the Science and Technology Program of Zhejiang Province,China(No.2008C16017).
文摘A 5-GHz CMOS programmable frequency divider whose modulus can be varied from 2403 to 2480 for 2.4-GHz ZigBee applications is presented.The divider based on a dual-modulus prescaler(DMP) and pulse-swallow counter is designed to reduce power consumption and chip area.Implemented in the 0.18-μm mixed-signal CMOS process,the divider operates over a wide range of 1-7.4 GHz with an input signal of 7.5 dBm;the programmable divider output phase noise is -125.3 dBc/Hz at an offset of 100 kHz.The core circuit without test buffer consumes 4.3 mA current from a 1.8 V power supply and occupies a chip area of approximately 0.015 mm^2.The experimental results indicate that the programmable divider works well for its application in frequency synthesizers.