We demonstrate a deep-learning neural network(DNN) method for the measurement of molecular alignment by using the molecular-alignment-based cross-correlation polarization-gating frequency resolved optical gating(M-XFR...We demonstrate a deep-learning neural network(DNN) method for the measurement of molecular alignment by using the molecular-alignment-based cross-correlation polarization-gating frequency resolved optical gating(M-XFROG) technique.Our network has the capacity for direct measurement of molecular alignment from the FROG traces. In a proof-of-principle experiment, we have demonstrated our method in O^(2) molecules. With our method, the molecular alignment factor<cos^(2)θ>(t) of O_(2), impulsively excited by a pump pulse, was directly reconstructed. The accuracy and validity of the reconstruction have been verified by comparison with the simulations based on experimental parameters.展开更多
通过经典力学及流体力学基本原理,建立轨道模型对气流粉碎/静电分散相复合制备超微粉体中粉碎分散仓内颗粒的运动过程进行了数值模拟研究,揭示了气流粉碎/静电分散过程中粉体颗粒的运动规律。当荷电电压为20 k V,射流速度较低时粉体颗...通过经典力学及流体力学基本原理,建立轨道模型对气流粉碎/静电分散相复合制备超微粉体中粉碎分散仓内颗粒的运动过程进行了数值模拟研究,揭示了气流粉碎/静电分散过程中粉体颗粒的运动规律。当荷电电压为20 k V,射流速度较低时粉体颗粒流存在准稳态层流流动现象;随着射流速度的提高,粉体颗粒转变为弥散分布,且分散性具有一定程度的提高;当荷电电压增大至60 k V时,仓内粉体颗粒的分散性有了进一步的提高,呈现出较好的均匀分散状态。研究结果表明,增大射流速度和荷电电压能够有效的提高制备过程中粉体颗粒的分散性,且后者效果更为明显。展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFA0308300)the National Natural Science Foundation of China(Nos.91950202,12225406,12074136,and 12021004)the Natural Science Foundation of Hubei Province(No.2021CFB330).
文摘We demonstrate a deep-learning neural network(DNN) method for the measurement of molecular alignment by using the molecular-alignment-based cross-correlation polarization-gating frequency resolved optical gating(M-XFROG) technique.Our network has the capacity for direct measurement of molecular alignment from the FROG traces. In a proof-of-principle experiment, we have demonstrated our method in O^(2) molecules. With our method, the molecular alignment factor<cos^(2)θ>(t) of O_(2), impulsively excited by a pump pulse, was directly reconstructed. The accuracy and validity of the reconstruction have been verified by comparison with the simulations based on experimental parameters.
文摘通过经典力学及流体力学基本原理,建立轨道模型对气流粉碎/静电分散相复合制备超微粉体中粉碎分散仓内颗粒的运动过程进行了数值模拟研究,揭示了气流粉碎/静电分散过程中粉体颗粒的运动规律。当荷电电压为20 k V,射流速度较低时粉体颗粒流存在准稳态层流流动现象;随着射流速度的提高,粉体颗粒转变为弥散分布,且分散性具有一定程度的提高;当荷电电压增大至60 k V时,仓内粉体颗粒的分散性有了进一步的提高,呈现出较好的均匀分散状态。研究结果表明,增大射流速度和荷电电压能够有效的提高制备过程中粉体颗粒的分散性,且后者效果更为明显。