针对传统的两阶段高模糊效用挖掘算法存在产生大量候选项集、忽略项集之间的联系和需要重复扫描数据库的问题,提出了一阶段基于模糊列表的相关高模糊效用挖掘算法(Correlated High Fuzzy Utility Mining Algorithm Based on Fuzzy List,...针对传统的两阶段高模糊效用挖掘算法存在产生大量候选项集、忽略项集之间的联系和需要重复扫描数据库的问题,提出了一阶段基于模糊列表的相关高模糊效用挖掘算法(Correlated High Fuzzy Utility Mining Algorithm Based on Fuzzy List,CoHFUIM)。算法设计了新的模糊列表结构(FHUI-list),使挖掘过程仅需扫描一次数据库,提高了运行效率;上述算法增加了相关性约束并提出了Cos-prune剪枝策略,减少了候选项集的数量,使挖掘出的项集既是高效用的也是高相关的;为了使上述算法适用于动态数据库,提出了改进算法CoHFUIM+。在Chess、Connect和Mushroom三个真实数据集进行仿真,结果表明改进算法的运行时间、内存使用及延展性均优于经典算法TPFU。展开更多
城市功能区是认知城市复杂系统的重要单元。然而,由于城市系统的复杂性,城市功能区分类目前仍存在一定的挑战。本文提出构建一种基于POI(Point of Interest,兴趣点)和主动学习算法的城市功能区分类方法。一方面,该方法采用的主动学习算...城市功能区是认知城市复杂系统的重要单元。然而,由于城市系统的复杂性,城市功能区分类目前仍存在一定的挑战。本文提出构建一种基于POI(Point of Interest,兴趣点)和主动学习算法的城市功能区分类方法。一方面,该方法采用的主动学习算法是一种半监督分类方法。相较于非监督分类方法,该方法可具有更高的分类精度;相较于监督分类方法,该方法仅需标记少量的功能区类型,而由于城市系统的复杂性,功能区类型的标记往往需要行业专家的专业知识及对城市深入地熟悉与了解。另一方面,相较于现有研究中常用的大数据(高空间分辨率遥感影像、POI、移动通信、公交刷卡等社会感知数据),该方法选择的POI数据具有易获取、数据完整性高且兼顾城市系统中地理实体的自然属性和社会经济属性的特点,使得本方法具有较高的可行性。本文以北京市朝阳区为例,采用该方法进行城市功能区分类,并将识别结果与人工识别结果进行对比分析,验证了本方法的可行性与准确性,然后分析了该方法实现过程中的两个重要参数对分类结果准确性的影响。展开更多
文摘针对传统的两阶段高模糊效用挖掘算法存在产生大量候选项集、忽略项集之间的联系和需要重复扫描数据库的问题,提出了一阶段基于模糊列表的相关高模糊效用挖掘算法(Correlated High Fuzzy Utility Mining Algorithm Based on Fuzzy List,CoHFUIM)。算法设计了新的模糊列表结构(FHUI-list),使挖掘过程仅需扫描一次数据库,提高了运行效率;上述算法增加了相关性约束并提出了Cos-prune剪枝策略,减少了候选项集的数量,使挖掘出的项集既是高效用的也是高相关的;为了使上述算法适用于动态数据库,提出了改进算法CoHFUIM+。在Chess、Connect和Mushroom三个真实数据集进行仿真,结果表明改进算法的运行时间、内存使用及延展性均优于经典算法TPFU。
文摘城市功能区是认知城市复杂系统的重要单元。然而,由于城市系统的复杂性,城市功能区分类目前仍存在一定的挑战。本文提出构建一种基于POI(Point of Interest,兴趣点)和主动学习算法的城市功能区分类方法。一方面,该方法采用的主动学习算法是一种半监督分类方法。相较于非监督分类方法,该方法可具有更高的分类精度;相较于监督分类方法,该方法仅需标记少量的功能区类型,而由于城市系统的复杂性,功能区类型的标记往往需要行业专家的专业知识及对城市深入地熟悉与了解。另一方面,相较于现有研究中常用的大数据(高空间分辨率遥感影像、POI、移动通信、公交刷卡等社会感知数据),该方法选择的POI数据具有易获取、数据完整性高且兼顾城市系统中地理实体的自然属性和社会经济属性的特点,使得本方法具有较高的可行性。本文以北京市朝阳区为例,采用该方法进行城市功能区分类,并将识别结果与人工识别结果进行对比分析,验证了本方法的可行性与准确性,然后分析了该方法实现过程中的两个重要参数对分类结果准确性的影响。