-
题名面向智能渗透攻击的欺骗防御方法
被引量:5
- 1
-
-
作者
陈晋音
胡书隆
邢长友
张国敏
-
机构
浙江工业大学信息工程学院
浙江工业大学网络空间安全研究院
陆军工程大学指挥控制工程学院
-
出处
《通信学报》
EI
CSCD
北大核心
2022年第10期106-120,共15页
-
基金
国家自然科学基金资助项目(No.62072406)
浙江省重点研发计划基金资助项目(No.2021C01117)
+1 种基金
2020年工业互联网创新发展工程基金资助项目(No.TC200H01V)
浙江省万人计划科技创新领军人才基金资助项目(No.2020R52011)。
-
文摘
基于强化学习的智能渗透攻击旨在将渗透过程建模为马尔可夫决策过程,以不断试错的方式训练攻击者进行渗透路径寻优,从而使攻击者具有较强的攻击能力。为了防止智能渗透攻击被恶意利用,提出一种面向基于强化学习的智能渗透攻击的欺骗防御方法。首先,获取攻击者在构建渗透攻击模型时的必要信息(状态、动作、奖励);其次,分别通过状态维度置反扰乱动作生成,通过奖励值符号翻转进行混淆欺骗,实现对应于渗透攻击的前期、中期及末期的欺骗防御;最后,在同一网络环境中展开3个阶段的防御对比实验。实验结果表明,所提方法可以有效降低基于强化学习的智能渗透攻击成功率,其中,扰乱攻击者动作生成的欺骗方法在干扰比例为20%时,渗透攻击成功率降低为0。
-
关键词
强化学习
智能渗透攻击
攻击路径
欺骗防御
-
Keywords
reinforcement learning
intelligent penetration attack
attack path
deception defense
-
分类号
TP393.08
[自动化与计算机技术—计算机应用技术]
-