The TNC IF-T Protocol Binding to TLS(TIPBT) is specified by Trusted Computing Group(TCG) for TNC assessment exchanges.However,the TIPBT cannot be analysed by current Strand Space Model(SSM) because of the different re...The TNC IF-T Protocol Binding to TLS(TIPBT) is specified by Trusted Computing Group(TCG) for TNC assessment exchanges.However,the TIPBT cannot be analysed by current Strand Space Model(SSM) because of the different requirements from the traditional security protocols.In order to solve this problem,first,we give an extension of the SSM and point out the TIPBT cannot prevent Man-in-the-Middle(MITM) attacks in some cases based on the extended SSM.Then,we improve the TIPBT and show that the improved TIPBT can resist MITM attacks in the extended SSM.展开更多
为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-means的DBSCAN(density-based spatial clustering of applications with noise)时空驻点聚类过程将居民多天的原始轨迹...为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-means的DBSCAN(density-based spatial clustering of applications with noise)时空驻点聚类过程将居民多天的原始轨迹点分成不同的时空驻点簇;然后,利用基于速度阈值的停留点簇和移动点簇识别过程将居民的每一个时空驻点簇区分为停留点簇或移动点簇;接着,利用基于K近距离的DBSCAN重要停留点聚类过程将居民的停留点分成不同的重要停留点簇;最后,利用基于KD-tree优化的KNN(K-nearest neighbor)职住地识别过程将居民的每个重要停留点识别为工作地、居住地、职住同一区域或兴趣地点区域。实验结果表明,该方法的每个过程都是合理有效的,并且最终的职住地识别效果要优于时间阈值法、累加时间法和信息熵法。展开更多
基金supported in part by the National Natural Science Foundation of China under Grants No.60473072,No.60803151the Joint Fund of Natural Science Foundation of China with the Guangdong Provincial Government under Grant No.U0632004
文摘The TNC IF-T Protocol Binding to TLS(TIPBT) is specified by Trusted Computing Group(TCG) for TNC assessment exchanges.However,the TIPBT cannot be analysed by current Strand Space Model(SSM) because of the different requirements from the traditional security protocols.In order to solve this problem,first,we give an extension of the SSM and point out the TIPBT cannot prevent Man-in-the-Middle(MITM) attacks in some cases based on the extended SSM.Then,we improve the TIPBT and show that the improved TIPBT can resist MITM attacks in the extended SSM.
文摘为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-means的DBSCAN(density-based spatial clustering of applications with noise)时空驻点聚类过程将居民多天的原始轨迹点分成不同的时空驻点簇;然后,利用基于速度阈值的停留点簇和移动点簇识别过程将居民的每一个时空驻点簇区分为停留点簇或移动点簇;接着,利用基于K近距离的DBSCAN重要停留点聚类过程将居民的停留点分成不同的重要停留点簇;最后,利用基于KD-tree优化的KNN(K-nearest neighbor)职住地识别过程将居民的每个重要停留点识别为工作地、居住地、职住同一区域或兴趣地点区域。实验结果表明,该方法的每个过程都是合理有效的,并且最终的职住地识别效果要优于时间阈值法、累加时间法和信息熵法。