期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于C3D和视觉元素的视频描述 被引量:1
1
作者 史景伦 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第8期88-95,共8页
随着深度学习技术的发展,利用卷积神经网络(CNN)提取视频帧特征,再用循环神经网络(RNN)生成句子的方法被广泛用于视频描述任务中.然而,这种直接转换方式忽略了很多视频内在信息,如视频序列的时序信息、运动信息及丰富的视觉元素信息等.... 随着深度学习技术的发展,利用卷积神经网络(CNN)提取视频帧特征,再用循环神经网络(RNN)生成句子的方法被广泛用于视频描述任务中.然而,这种直接转换方式忽略了很多视频内在信息,如视频序列的时序信息、运动信息及丰富的视觉元素信息等.为此,文中提出了一种基于自适应帧循环填充法的多模态视频描述(AFCF-MVC)模型;采用自适应特征提取法提取含有丰富时空信息和运动信息的视频C3D特征,使得C3D特征包含了整个视频序列所有帧的信息,并将其作为神经网络的输入;针对不同视频的标注句子长度不同问题,提出了自适应帧循环填充法,即根据标注句子的长度自适应地控制输入特征的个数,在保证句子输入完整的前提下为神经网络提供尽可能多的特征输入,并起到重复学习的作用;为了充分利用视频丰富的视觉元素信息,通过视觉检测器检测出视频帧的视觉元素信息,编码后作为额外的补充信息融合进AFCF-MVC模型中.在M-VAD和MPII-MD数据集上的实验结果显示,该模型既能准确地描述视频中的内容,也能在语法结构上模拟出人类语言的丰富性. 展开更多
关键词 深度学习 卷积神经网络 循环神经网络 视频描述 自适应 视觉元素
下载PDF
基于自适应帧采样算法和BLSTM的视频转文字研究 被引量:1
2
作者 张荣锋 宁培阳 +2 位作者 史景伦 邱威 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第1期103-111,共9页
针对视频转文字(video to text)存在的建模复杂和准确率低的问题,提出了基于自适应帧采样算法和双向长短时记忆模型的视频转文字方法.自适应帧采样算法能够动态地调整采样率,以提供尽量多的特征来训练模型;结合双向长短时记忆模型,能有... 针对视频转文字(video to text)存在的建模复杂和准确率低的问题,提出了基于自适应帧采样算法和双向长短时记忆模型的视频转文字方法.自适应帧采样算法能够动态地调整采样率,以提供尽量多的特征来训练模型;结合双向长短时记忆模型,能有效学习视频中前面帧和未来帧的相关信息;同时,用于训练的特征是来自深度卷积神经网络的特征,使得这种双深度的网络结构能够学习视频帧在时空上的关联表示及全局依赖信息;帧信息的融合又增加了特征的种类,从而提升了实验效果.结果显示,在M-VAD和MPIIMD两个数据集中,文中的方法在METEOR中的评分均值分别为7.8%和8.6%,相对原S2VT模型分别提高了16.4%和21.1%,也提升了视频转文字的语言效果. 展开更多
关键词 视频转文字 自适应帧采样 双向长短时记忆模型 深度卷积神经网络 帧信息的融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部