The InVO4-TiO2 nano-crystalline photocatalyst was prepared by sol-gel method and characterized by DRS, FTIR, Raman and XRD. The photocatalytic activities of the prepared sample were investigated by photocatalytic degr...The InVO4-TiO2 nano-crystalline photocatalyst was prepared by sol-gel method and characterized by DRS, FTIR, Raman and XRD. The photocatalytic activities of the prepared sample were investigated by photocatalytic degradation of ethylene in the gaseous phase under visible light irradiation (λ>450 nm). The results indicate that both of pure TiO2 and InVO4 or their simple mixture show no photocatalytic activities for degradation of ethylene under visible light irradiation. However, as-synthesized InVO4-TiO2 catalyzes the degradation of ethylene into CO2 under visible light irradiation. In addition, the interaction between InVO4 and TiO2 results in some structural distortion to all the crystal forms of TiO2 in as-synthesized catalyst InVO4-TiO2.展开更多
A one dimensional coordination polymer, [(C7H18N)(Ag2I3)]n((C7H18N)+=Methyltriethylammonium) has been successfully synthesized and characterized by X-ray single-crystal diffraction method. Structure analysis shows tha...A one dimensional coordination polymer, [(C7H18N)(Ag2I3)]n((C7H18N)+=Methyltriethylammonium) has been successfully synthesized and characterized by X-ray single-crystal diffraction method. Structure analysis shows that the compound consists of organic cations(Methyltriethylammonium) and inorganic anion chains (Ag2I3)n-. The inorganic moiety consists of AgI4 tetrahedron, which shares the same edges with adjacent AgI4 tetrahedrons to form one-dimensional infinite double chains along a-axis. There exists weak interaction among Ag…Ag atoms in the crystal. Anion chains are surrounded by Methyltriethylammonium cations. Anion chains and cations are in combination with each other by static attracting forces in the crystal to form so-called organic-inorganic hybrid structure. According to the crystal structure data, quantum chemistry calculation with DFT on B3LYP level was used to reveal the electronic structure of title compound. CCDC: 254288.展开更多
A novel coordination polymer [(C8H20N)(Ag2I3)]n ([C8H20N]+ = tetraethyl ammo- nium (TEA)) was synthesized by the reaction of AgI and C8H20NI at room temperature with pH = 6.5, and structurally characterized by means o...A novel coordination polymer [(C8H20N)(Ag2I3)]n ([C8H20N]+ = tetraethyl ammo- nium (TEA)) was synthesized by the reaction of AgI and C8H20NI at room temperature with pH = 6.5, and structurally characterized by means of X-ray single-crystal diffraction. It crystallizes in orthorhombic, space group Pna21 with a = 7.3323(9), b = 18.250(2), c =12.5294(15) ?, C6.33H16.16NAg2I3, Mr = 702.76, V = 1676.6(4) ?3, Z = 4, Dc = 2.784 g/cm3, F(000) = 1256.6, μ(MoKα) = 7.828 mm-1, the final R = 0.0529 and wR = 0.1586 for 1189 observed reflections with I > 2σ(I). X-ray analysis shows that the [Ag2I3]n- chain is built up by AgI4 tetrahedron and in combination with quaternary ammonium cations ([C8H20N]+) by static attractive forces to form the so-called organic-inorganic hybrid material.展开更多
A new inorganic-organic hybrid constructed from biisoquinoline dication and tin halide, [(BIQBT)(Sn Cl6)]n(1, BIQBT = 1,4-bis(isoquinoline) butane), has been synthesized and structurally determined by X-ray di...A new inorganic-organic hybrid constructed from biisoquinoline dication and tin halide, [(BIQBT)(Sn Cl6)]n(1, BIQBT = 1,4-bis(isoquinoline) butane), has been synthesized and structurally determined by X-ray diffraction method. 1 crystallizes in the monoclinic system, space group Cc with Mr = 644.82, a = 16.589(3), b = 18.388(4), c = 8.5532(17)A, β = 108.75(3)°, V = 2470.6(9) A3, Z = 4, Dc = 1.736 g/cm^3, F(000) = 1281, μ(Mo Kα) = 1.697 mm^–1, the final R = 0.0197 and wR = 0.0493 for 4614 observed reflections with I 〉 2(I). 1 consists of BIQBT^2+dications and mononuclear hexachloridostannate Sn Cl62- anion, and hydrogen bonds among them contribute to the formation of a 1-D chain. Strong fluorescence can be detected in 1, which was explained by theoretical calculation. Its electrochemical behavior was investigated, and the theoretical calculations reveal that the π···π stacking interaction is dominated for their structural stabilization.展开更多
The coordination polymer [(DBU-H)(PbI3)]n(DBU=catena-(1,8-diazabicyclo[5,4,0]-undec-7-ene) was synthesized by self-assembly reaction of DBU and PbI2 at room temperature with pH=6.0 and structurally characterize...The coordination polymer [(DBU-H)(PbI3)]n(DBU=catena-(1,8-diazabicyclo[5,4,0]-undec-7-ene) was synthesized by self-assembly reaction of DBU and PbI2 at room temperature with pH=6.0 and structurally characterized by means of X-ray single crystal diffraction. It crystallizes in monoclinic system with space group P21/c and crystal parameters a = 1.1940(2) nm, b = 1.7409(4) nm, c = 0.81347(16) nm, β= 100.32(3)°, chemical formula C9H17N213Pb and Mr=741.15, V= 1.6635(6) nm^3, Z=4, Dc=2.959 g/cm^3, F(000)= 1304,μ(Mo Kα)= 15.687 mm^-1, the final R=0.0389 and wR=0.0635 for 2279 observed reflections with 1〉2σ(I). Structure analysis shows that the inorganic anion chain consists of distorted PbI6 octahedra, which shares the same faces with adjacent PbI6 units to form one-dimensional infinite chains along the c-axis. Anion chains are surrounded by protonated (DBU-H)^+ cations. Anion chains and cations are in combination with each other by static attracting forces in the crystal to form so-called organic-inorganic hybrid structure. According to the crystal structure data, quantum chemical calculation with DFT at B3LYP level was used to reveal the electronic structure of title compound.展开更多
A novel coordinated polymer [(C22H50N2)(Ag2I4)]n([C22H50N2]2+ = N,N?-1,2- ethylence-bis(N,N?-dimethyl octane ammonium) (EDO)) was synthesized by the reaction of AgI and EDO at room temperature with pH = 6.8, and struc...A novel coordinated polymer [(C22H50N2)(Ag2I4)]n([C22H50N2]2+ = N,N?-1,2- ethylence-bis(N,N?-dimethyl octane ammonium) (EDO)) was synthesized by the reaction of AgI and EDO at room temperature with pH = 6.8, and structurally characterized by means of X-ray single- crystal diffraction. It crystallizes in triclinic, space group P1 with a = 9.6080(1), b = 12.7643(2), c = 7.2157(8) ? a = 100.835(8), ?= 91.030(3), ? = 91.297(9)o, (C21.50H48.50Ag2I4N2), Mr = 1058.46, V = 868.71(19) 3, Z = 1, Dc = 2.023g/cm3, F(000) = 497.5, ?MoKa) = 4.692 mm-1, the final R = 0.0623 and wR = 0.1949 for 2641 observed reflections with I > 2s(I). The title compound consists of cations ([C22H50N2]2+) and anion chain (Ag2I42-)∞ which are combined by static attracting forces in the crystal to form the so-called organic-inorganic hybrid material.展开更多
A series of hexagonal ZnIn2S4 samples with different morphologies have been successfully prepared via a facile solvothermal approach using different alcohol solvents with the optimum synthesis time and temperature. X-...A series of hexagonal ZnIn2S4 samples with different morphologies have been successfully prepared via a facile solvothermal approach using different alcohol solvents with the optimum synthesis time and temperature. X-ray diffraction, field emission scanning electron microscopy, UV-vis diffuse reflection spectroscopy and photoelectrochemical measurements are employed to determine the properties of the samples. It is found that the solvent has a significant influence on the morphology, optical properties and electronic nature of the samples. The photocatalytic activities of the samples have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde to benzaldehyde and the degradation of methyl orange(MO) under visible light irradiation. The results reveal that the photocatalytic activities of ZnIn2S4 are closely related to the reaction solvent. The ethanol-mediated ZnIn2S4 exhibits the best photocatalytic performance toward selective oxidation of benzyl alcohol to benzaldehyde and the degradation of dye MO compared to the samples prepared in other solvents, which can be attributed to the integrative effect of the enhanced light absorption intensity and the prolonged lifetime of photogenerated carriers. In addition, a possible mechanism is proposed and discussed. It is expected that our current research could promote further interest on the synthesizing efficient ternary chalcogenides semiconducting materials for environment remediation and organic transformation.展开更多
CdIn2S4 microspheres were synthesized by a facile hydrothermal method with the temperature ranging from 120 to 200 ℃. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, nitrogen sorption analysis, X-ray phot...CdIn2S4 microspheres were synthesized by a facile hydrothermal method with the temperature ranging from 120 to 200 ℃. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, nitrogen sorption analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperature were almost the same. The SBEX of CdIn2S4 products decreased when the synthesized temperature increased, and the largest SBET was 33.16 m2 g-1 (120 ℃ sample). The degradation of methyl orange (MO) under the visible-light irradiation had been used as a probe reaction to investigate the photocatalytic activity of the as-prepared CdIn2S4, which showed that the CdIn2S4 sample synthesized at 120 ℃ presented the best photocatalytic activity for MO degradation.展开更多
文摘The InVO4-TiO2 nano-crystalline photocatalyst was prepared by sol-gel method and characterized by DRS, FTIR, Raman and XRD. The photocatalytic activities of the prepared sample were investigated by photocatalytic degradation of ethylene in the gaseous phase under visible light irradiation (λ>450 nm). The results indicate that both of pure TiO2 and InVO4 or their simple mixture show no photocatalytic activities for degradation of ethylene under visible light irradiation. However, as-synthesized InVO4-TiO2 catalyzes the degradation of ethylene into CO2 under visible light irradiation. In addition, the interaction between InVO4 and TiO2 results in some structural distortion to all the crystal forms of TiO2 in as-synthesized catalyst InVO4-TiO2.
文摘A one dimensional coordination polymer, [(C7H18N)(Ag2I3)]n((C7H18N)+=Methyltriethylammonium) has been successfully synthesized and characterized by X-ray single-crystal diffraction method. Structure analysis shows that the compound consists of organic cations(Methyltriethylammonium) and inorganic anion chains (Ag2I3)n-. The inorganic moiety consists of AgI4 tetrahedron, which shares the same edges with adjacent AgI4 tetrahedrons to form one-dimensional infinite double chains along a-axis. There exists weak interaction among Ag…Ag atoms in the crystal. Anion chains are surrounded by Methyltriethylammonium cations. Anion chains and cations are in combination with each other by static attracting forces in the crystal to form so-called organic-inorganic hybrid structure. According to the crystal structure data, quantum chemistry calculation with DFT on B3LYP level was used to reveal the electronic structure of title compound. CCDC: 254288.
基金This work was supported by the Foundation of Education Committee of Fujian Province (JB03053, JB04016)
文摘A novel coordination polymer [(C8H20N)(Ag2I3)]n ([C8H20N]+ = tetraethyl ammo- nium (TEA)) was synthesized by the reaction of AgI and C8H20NI at room temperature with pH = 6.5, and structurally characterized by means of X-ray single-crystal diffraction. It crystallizes in orthorhombic, space group Pna21 with a = 7.3323(9), b = 18.250(2), c =12.5294(15) ?, C6.33H16.16NAg2I3, Mr = 702.76, V = 1676.6(4) ?3, Z = 4, Dc = 2.784 g/cm3, F(000) = 1256.6, μ(MoKα) = 7.828 mm-1, the final R = 0.0529 and wR = 0.1586 for 1189 observed reflections with I > 2σ(I). X-ray analysis shows that the [Ag2I3]n- chain is built up by AgI4 tetrahedron and in combination with quaternary ammonium cations ([C8H20N]+) by static attractive forces to form the so-called organic-inorganic hybrid material.
文摘A new inorganic-organic hybrid constructed from biisoquinoline dication and tin halide, [(BIQBT)(Sn Cl6)]n(1, BIQBT = 1,4-bis(isoquinoline) butane), has been synthesized and structurally determined by X-ray diffraction method. 1 crystallizes in the monoclinic system, space group Cc with Mr = 644.82, a = 16.589(3), b = 18.388(4), c = 8.5532(17)A, β = 108.75(3)°, V = 2470.6(9) A3, Z = 4, Dc = 1.736 g/cm^3, F(000) = 1281, μ(Mo Kα) = 1.697 mm^–1, the final R = 0.0197 and wR = 0.0493 for 4614 observed reflections with I 〉 2(I). 1 consists of BIQBT^2+dications and mononuclear hexachloridostannate Sn Cl62- anion, and hydrogen bonds among them contribute to the formation of a 1-D chain. Strong fluorescence can be detected in 1, which was explained by theoretical calculation. Its electrochemical behavior was investigated, and the theoretical calculations reveal that the π···π stacking interaction is dominated for their structural stabilization.
文摘The coordination polymer [(DBU-H)(PbI3)]n(DBU=catena-(1,8-diazabicyclo[5,4,0]-undec-7-ene) was synthesized by self-assembly reaction of DBU and PbI2 at room temperature with pH=6.0 and structurally characterized by means of X-ray single crystal diffraction. It crystallizes in monoclinic system with space group P21/c and crystal parameters a = 1.1940(2) nm, b = 1.7409(4) nm, c = 0.81347(16) nm, β= 100.32(3)°, chemical formula C9H17N213Pb and Mr=741.15, V= 1.6635(6) nm^3, Z=4, Dc=2.959 g/cm^3, F(000)= 1304,μ(Mo Kα)= 15.687 mm^-1, the final R=0.0389 and wR=0.0635 for 2279 observed reflections with 1〉2σ(I). Structure analysis shows that the inorganic anion chain consists of distorted PbI6 octahedra, which shares the same faces with adjacent PbI6 units to form one-dimensional infinite chains along the c-axis. Anion chains are surrounded by protonated (DBU-H)^+ cations. Anion chains and cations are in combination with each other by static attracting forces in the crystal to form so-called organic-inorganic hybrid structure. According to the crystal structure data, quantum chemical calculation with DFT at B3LYP level was used to reveal the electronic structure of title compound.
基金This work was supported by the Foundation of Education Committee of Fujian Province (JB01020)
文摘A novel coordinated polymer [(C22H50N2)(Ag2I4)]n([C22H50N2]2+ = N,N?-1,2- ethylence-bis(N,N?-dimethyl octane ammonium) (EDO)) was synthesized by the reaction of AgI and EDO at room temperature with pH = 6.8, and structurally characterized by means of X-ray single- crystal diffraction. It crystallizes in triclinic, space group P1 with a = 9.6080(1), b = 12.7643(2), c = 7.2157(8) ? a = 100.835(8), ?= 91.030(3), ? = 91.297(9)o, (C21.50H48.50Ag2I4N2), Mr = 1058.46, V = 868.71(19) 3, Z = 1, Dc = 2.023g/cm3, F(000) = 497.5, ?MoKa) = 4.692 mm-1, the final R = 0.0623 and wR = 0.1949 for 2641 observed reflections with I > 2s(I). The title compound consists of cations ([C22H50N2]2+) and anion chain (Ag2I42-)∞ which are combined by static attracting forces in the crystal to form the so-called organic-inorganic hybrid material.
基金financially supported by the Key Projects of Youth Natural Fund in Fujian Universities,China(JZ160414)
文摘A series of hexagonal ZnIn2S4 samples with different morphologies have been successfully prepared via a facile solvothermal approach using different alcohol solvents with the optimum synthesis time and temperature. X-ray diffraction, field emission scanning electron microscopy, UV-vis diffuse reflection spectroscopy and photoelectrochemical measurements are employed to determine the properties of the samples. It is found that the solvent has a significant influence on the morphology, optical properties and electronic nature of the samples. The photocatalytic activities of the samples have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde to benzaldehyde and the degradation of methyl orange(MO) under visible light irradiation. The results reveal that the photocatalytic activities of ZnIn2S4 are closely related to the reaction solvent. The ethanol-mediated ZnIn2S4 exhibits the best photocatalytic performance toward selective oxidation of benzyl alcohol to benzaldehyde and the degradation of dye MO compared to the samples prepared in other solvents, which can be attributed to the integrative effect of the enhanced light absorption intensity and the prolonged lifetime of photogenerated carriers. In addition, a possible mechanism is proposed and discussed. It is expected that our current research could promote further interest on the synthesizing efficient ternary chalcogenides semiconducting materials for environment remediation and organic transformation.
基金financially supported by the Natural Science Foundation of Fujian Province (2011J05024)
文摘CdIn2S4 microspheres were synthesized by a facile hydrothermal method with the temperature ranging from 120 to 200 ℃. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, nitrogen sorption analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperature were almost the same. The SBEX of CdIn2S4 products decreased when the synthesized temperature increased, and the largest SBET was 33.16 m2 g-1 (120 ℃ sample). The degradation of methyl orange (MO) under the visible-light irradiation had been used as a probe reaction to investigate the photocatalytic activity of the as-prepared CdIn2S4, which showed that the CdIn2S4 sample synthesized at 120 ℃ presented the best photocatalytic activity for MO degradation.