A high-sensitive terahertz detector operating at room temperature was demonstrated based on parametric upconversion.A nanosecond 1064-nm Nd:YAG laser was used to pump the parametric up-conversion detector and the upco...A high-sensitive terahertz detector operating at room temperature was demonstrated based on parametric upconversion.A nanosecond 1064-nm Nd:YAG laser was used to pump the parametric up-conversion detector and the upconversion from terahertz wave to NIR laser was realized in a lithium niobate crystal.The minimum detectable terahertz energy of 9 p J was realized with the detection dynamic range of 54 d B,which was three orders of magnitude higher than that of commercial Golay cell.The detectable terahertz frequency range of the detection system was 0.90 Thz–1.83 THz.Besides,the effects of pump energy and effective gain length on the detection sensitivity were studied in experiment.The results showed that higher pump energy and longer effective gain length are helpful for improving the detection sensitivity of parametric up-conversion detector.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.U1837202,61775160,61771332,62011540006,and 62175182)。
文摘A high-sensitive terahertz detector operating at room temperature was demonstrated based on parametric upconversion.A nanosecond 1064-nm Nd:YAG laser was used to pump the parametric up-conversion detector and the upconversion from terahertz wave to NIR laser was realized in a lithium niobate crystal.The minimum detectable terahertz energy of 9 p J was realized with the detection dynamic range of 54 d B,which was three orders of magnitude higher than that of commercial Golay cell.The detectable terahertz frequency range of the detection system was 0.90 Thz–1.83 THz.Besides,the effects of pump energy and effective gain length on the detection sensitivity were studied in experiment.The results showed that higher pump energy and longer effective gain length are helpful for improving the detection sensitivity of parametric up-conversion detector.
基金Fundamental Research Funds for the Central Universities(2022JKF02006)Open Project of Key Laboratory of Drug Monitoring and Control,Ministry of Public Security(2023-KLDMC-02)。