随着车联网技术的快速发展和广泛部署,其在为智能网联汽车提供互联网与大数据分析等智能化服务的同时,引入了网络入侵等安全与隐私问题。传统车载网络的封闭性导致现有的车载网络通信协议,特别是部署最为广泛的控制器局域网络(Controlle...随着车联网技术的快速发展和广泛部署,其在为智能网联汽车提供互联网与大数据分析等智能化服务的同时,引入了网络入侵等安全与隐私问题。传统车载网络的封闭性导致现有的车载网络通信协议,特别是部署最为广泛的控制器局域网络(Controller Area Network,CAN)总线协议,在发布时缺少隐私与安全保护机制。因此,为检测网络入侵、保护智能网联汽车安全,文中提出了一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN网络入侵检测方法。该方法提取单位时间窗内CAN网络报文ID的加权自信息量和ID的归一化值作为特征信息,并在移动边缘计算服务器处构建并训练SVDD模型,目标车辆基于训练的SVDD模型进行异常特征值识别,从而实现实时的车载CAN网络入侵检测。文中采用韩国高丽大学HCR实验室公开的CAN网络数据集,对所提方法与3种传统的基于信息熵的车载网络入侵检测方法在拒绝服务攻击和伪装攻击检测准确率方面进行了对比与分析。仿真实验结果表明,在少量报文入侵时,所提方法显著提高了入侵检测的准确率。展开更多
基于卷积神经网络的YOLOv3(You Only Look Once v3)目标检测算法设计了一种基于目标检测及模糊匹配机制的非标船牌识别软件系统,并通过在船舶视频监控系统中的实际应用,验证了该船牌识别系统的可行性,提高了船舶铭牌识别的可靠性。YOLOv...基于卷积神经网络的YOLOv3(You Only Look Once v3)目标检测算法设计了一种基于目标检测及模糊匹配机制的非标船牌识别软件系统,并通过在船舶视频监控系统中的实际应用,验证了该船牌识别系统的可行性,提高了船舶铭牌识别的可靠性。YOLOv3目标检测算法将检测简化为一个回归问题,通过仅仅一个网络,就能从图像中得到物体的类别与概率,确保了识别的准确性与实时性。针对船舶非标铭牌锈蚀、遮挡等问题,创新点是在基于YOLOv3的非标船牌识别系统的实现框架之上,设计船名有限中文库与模糊匹配机制,有效解决了船牌识别准确率过低的问题,取得了较好的识别效果。展开更多
文摘随着车联网技术的快速发展和广泛部署,其在为智能网联汽车提供互联网与大数据分析等智能化服务的同时,引入了网络入侵等安全与隐私问题。传统车载网络的封闭性导致现有的车载网络通信协议,特别是部署最为广泛的控制器局域网络(Controller Area Network,CAN)总线协议,在发布时缺少隐私与安全保护机制。因此,为检测网络入侵、保护智能网联汽车安全,文中提出了一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN网络入侵检测方法。该方法提取单位时间窗内CAN网络报文ID的加权自信息量和ID的归一化值作为特征信息,并在移动边缘计算服务器处构建并训练SVDD模型,目标车辆基于训练的SVDD模型进行异常特征值识别,从而实现实时的车载CAN网络入侵检测。文中采用韩国高丽大学HCR实验室公开的CAN网络数据集,对所提方法与3种传统的基于信息熵的车载网络入侵检测方法在拒绝服务攻击和伪装攻击检测准确率方面进行了对比与分析。仿真实验结果表明,在少量报文入侵时,所提方法显著提高了入侵检测的准确率。
文摘基于卷积神经网络的YOLOv3(You Only Look Once v3)目标检测算法设计了一种基于目标检测及模糊匹配机制的非标船牌识别软件系统,并通过在船舶视频监控系统中的实际应用,验证了该船牌识别系统的可行性,提高了船舶铭牌识别的可靠性。YOLOv3目标检测算法将检测简化为一个回归问题,通过仅仅一个网络,就能从图像中得到物体的类别与概率,确保了识别的准确性与实时性。针对船舶非标铭牌锈蚀、遮挡等问题,创新点是在基于YOLOv3的非标船牌识别系统的实现框架之上,设计船名有限中文库与模糊匹配机制,有效解决了船牌识别准确率过低的问题,取得了较好的识别效果。