期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
混合改进策略的黑猩猩优化算法及其机械应用 被引量:14
1
作者 何庆 《控制与决策》 EI CSCD 北大核心 2023年第2期354-364,共11页
针对黑猩猩优化算法存在易陷入局部最优、收敛速度慢、寻优精度低等缺陷,提出混合改进策略的黑猩猩优化算法(SLWChOA).首先,利用Sobol序列初始化种群,增加种群的随机性和多样性,为算法全局寻优奠定基础;其次,引入基于凸透镜成像的反向... 针对黑猩猩优化算法存在易陷入局部最优、收敛速度慢、寻优精度低等缺陷,提出混合改进策略的黑猩猩优化算法(SLWChOA).首先,利用Sobol序列初始化种群,增加种群的随机性和多样性,为算法全局寻优奠定基础;其次,引入基于凸透镜成像的反向学习策略,将其应用到当前最优个体上产生新的个体,提高算法的收敛精度和速度;同时,将水波动态自适应因子添加到攻击者位置更新处,增强算法跳出局部最优的能力;最后,通过10个基准测试函数、Wilcoxon秩和检验以及部分CEC2014函数进行仿真实验来评价改进算法的寻优性能,实验结果表明,所提算法在寻优精度、收敛速度和鲁棒性上均较对比算法有较大提升.另外,通过一个机械优化设计实验进行测试分析,进一步验证了SLWChOA的可行性和适用性. 展开更多
关键词 黑猩猩优化算法 Sobol序列 凸透镜成像 水波动态自适应因子 机械优化设计
原文传递
融合Sin混沌和分段权值的阿基米德优化算法 被引量:10
2
作者 何庆 《计算机工程与应用》 CSCD 北大核心 2022年第14期63-72,共10页
针对阿基米德优化算法(Archimedes optimization algorithm,AOA)存在全局搜索能力弱、收敛精度低,易陷入局部最优等问题,提出融合Sin混沌和分段权值的阿基米德优化算法(SAOA)。采用无限折叠迭代的Sin混沌反向学习策略初始化种群,提高初... 针对阿基米德优化算法(Archimedes optimization algorithm,AOA)存在全局搜索能力弱、收敛精度低,易陷入局部最优等问题,提出融合Sin混沌和分段权值的阿基米德优化算法(SAOA)。采用无限折叠迭代的Sin混沌反向学习策略初始化种群,提高初始阶段解的质量,为全局搜索多样性奠定基础;引入算数交叉算子,将当前个体向与全局最优个体进行交叉,引导种群向最优解区域寻优,提高全局搜索能力;引入分段权值策略,平衡算法的全局勘探与局部开发能力,降低算法陷入局部最优的概率;通过对8个测试函数和部分CEC2014函数进行仿真实验及Wilcoxon秩和检验来评估改进算法的寻优性能,实验结果表明改进算法在搜索精度、收敛速度和稳定性等方面均有较大提升。另外,引入优化机械设计案例进行测试分析,进一步验证SAOA在工程优化问题上的可行性和适用性。 展开更多
关键词 阿基米德优化算法 Sin混沌反向学习 算数交叉操算子 分段权值 机械优化设计
下载PDF
融合折射学习和改进天牛须搜索的黑猩猩优化算法及其应用 被引量:7
3
作者 何庆 《传感技术学报》 CAS CSCD 北大核心 2022年第5期600-612,共13页
针对黑猩猩优化算法(ChOA)寻优存在全局搜索能力弱、收敛精度低、易陷入局部最优等缺陷,提出一种融合折射学习和改进天牛须搜索的黑猩猩优化算法(BCRChOA)。首先,借鉴天牛须算法搜索能力强和Levy飞行机制搜索方向和步长的不确定性的特点... 针对黑猩猩优化算法(ChOA)寻优存在全局搜索能力弱、收敛精度低、易陷入局部最优等缺陷,提出一种融合折射学习和改进天牛须搜索的黑猩猩优化算法(BCRChOA)。首先,借鉴天牛须算法搜索能力强和Levy飞行机制搜索方向和步长的不确定性的特点,将Levy飞行改进的天牛须搜索算法对ChOA进行搜索优化,提高ChOA的全局搜索能力;其次,在“攻击者”个体位置更新阶段引入云自适应动态权值,以协调算法全局探索和局部开发能力;最后,采用基于折射定律的反向学习策略提高算法跳出局部最优的能力。实验选取10个基准测试函数、部分CEC2014测试函数以及工程优化案例,将BCRChOA与最新的元启发式算法及其改进算法进行跨文献对比,结果表明BCRChOA在寻优能力和鲁棒性上均显著优于原始算法和对比文献方法。 展开更多
关键词 机械工程设计 黑猩猩优化算法 天牛须搜索 Levy飞行 云模型 折射学习
下载PDF
混沌精英池协同教与学改进的ChOA及其应用 被引量:2
4
作者 何庆 《计算机工程与应用》 CSCD 北大核心 2023年第6期299-309,共11页
针对黑猩猩优化算法存在全局搜索能力弱、寻优精度低、收敛速度慢等问题,提出一种混沌精英池协同教与学改进的黑猩猩优化算法(chimp optimization algorithm improved by the elite chaos pool collaborative teaching-learning,ECTChOA... 针对黑猩猩优化算法存在全局搜索能力弱、寻优精度低、收敛速度慢等问题,提出一种混沌精英池协同教与学改进的黑猩猩优化算法(chimp optimization algorithm improved by the elite chaos pool collaborative teaching-learning,ECTChOA)。采用混沌精英池策略生成初始种群,增强初始解的质量和种群的多样性,为算法全局寻优奠定基础;引入自适应振荡因子平衡ChOA的全局探索和局部开发能力;结合教与学优化算法的教学阶段和粒子群优化算法的个体记忆思想优化种群位置更新过程,提高算法的寻优精度和收敛速度。仿真实验将ECTChOA与标准ChOA、其他元启发式优化算法和最新改进ChOA在12个基准测试函数下进行寻优对比,实验结果与Wilcoxon秩和检验p值结果均表明所提改进算法具有更高搜索精度、更快的收敛速度和更好的鲁棒性。另外,将ECTChOA应用于机械工程设计案例中,进一步验证ECTChOA在实际工程问题中的可行性和适用性。 展开更多
关键词 黑猩猩优化算法 混沌精英池 教与学优化算法 粒子群优化算法 自适应振荡因子 机械工程设计
下载PDF
多策略融合改进的均衡优化算法及其应用 被引量:1
5
作者 何庆 《计算机工程与科学》 CSCD 北大核心 2023年第8期1508-1520,共13页
针对均衡优化(EO)算法寻优过程中存在兼顾全局探索和局部开发能力弱、寻优精度低、易陷入局部最优等问题,提出多策略融合改进的均衡优化算法(MEO)。首先,采用高破坏性多项式突变策略初始化种群,提高初始阶段解的质量,为全局寻优奠定基础... 针对均衡优化(EO)算法寻优过程中存在兼顾全局探索和局部开发能力弱、寻优精度低、易陷入局部最优等问题,提出多策略融合改进的均衡优化算法(MEO)。首先,采用高破坏性多项式突变策略初始化种群,提高初始阶段解的质量,为全局寻优奠定基础;其次,提出差分变异的重构均衡池策略,丰富迭代过程中种群的多样性,增强算法规避局部最优的能力;同时,采用S型变换因子平衡算法的全局探索和局部开发能力;最后,引入动态螺旋搜索策略,扩大算法的搜索范围,提高算法的收敛精度和速度。仿真实验将MEO算法与标准EO算法以及其他元启发式算法在8个基准测试函数上进行寻优比较,实验结果与Wilcoxon秩和检验结果均表明,本文改进策略能提高EO算法的寻优精度、全局探索和局部开发的能力以及跳出局部最优的能力。另外,将MEO算法应用在无线传感器网络(WSN)覆盖优化中,实验结果表明,MEO算法可以显著提高WSN的覆盖率,降低节点的冗余度,使节点分布更均匀。 展开更多
关键词 均衡优化算法 高破坏性多项式突变 差分变异的重构均衡池 S型变换因子 动态螺旋搜索 无线传感器网络
下载PDF
基于数据挖掘技术的高校课堂教学变革与创新
6
作者 何庆 《时代人物》 2021年第6期295-296,共2页
随着信息技术的高速发展,大数据、互联网+、云计算、移动通信等一批新型技术正在不断推动全世界素质教育的创新变革。智慧教育正是由此而形成的,它彻底改变了传统教育的模式,以学习者为中心,为学习者定制精准的学习方法和提供个性化学... 随着信息技术的高速发展,大数据、互联网+、云计算、移动通信等一批新型技术正在不断推动全世界素质教育的创新变革。智慧教育正是由此而形成的,它彻底改变了传统教育的模式,以学习者为中心,为学习者定制精准的学习方法和提供个性化学习资源。文章介绍了基于数据挖掘技术,通过给学习者推荐个性化学习资源的手段,促进学习者智慧发展,旨在为高校课堂教学变革与创新提供新的思路。 展开更多
关键词 智慧教育 个性化推荐 数据挖掘技术 变革
下载PDF
多策略协同改进的阿基米德优化算法及其应用 被引量:6
7
作者 何庆 《计算机应用研究》 CSCD 北大核心 2022年第5期1386-1394,共9页
针对阿基米德优化算法(AOA)寻优过程中存在全局搜索能力弱、收敛精度低、易陷入局部最优等缺陷,提出一种融合多策略的阿基米德优化算法(MAOA)。首先,采用随机高斯变异策略选取适应度优的多个个体引导种群向最优解区域寻优,增强全局搜索... 针对阿基米德优化算法(AOA)寻优过程中存在全局搜索能力弱、收敛精度低、易陷入局部最优等缺陷,提出一种融合多策略的阿基米德优化算法(MAOA)。首先,采用随机高斯变异策略选取适应度优的多个个体引导种群向最优解区域寻优,增强全局搜索能力;其次,利用多种混沌映射的随机性、遍历性和多样性,引入局部混沌搜索策略扩大混沌空间的搜索范围,提高算法的局部开发能力;同时,为了协调算法的全局勘探和局部开采能力,提出一种非线性动态密度降低因子;最后,利用Lévy飞行引导机制的黄金正弦策略对种群位置进行扰动更新,增加迭代过程中种群的多样性,提高算法跳出局部最优的能力。通过对12个基准测试函数和部分CEC2014测试函数进行仿真实验,结果表明所提算法能够改善AOA全局探索能力弱、易陷入局部最优等缺点,提高AOA的寻优精度和稳定性。另外,引入机械设计案例进行测试分析,进一步验证MAOA在处理实际问题上的适用性和可行性。 展开更多
关键词 阿基米德优化算法 随机高斯变异策略 非线性动态密度降低因子 Lévy飞行 黄金正弦 机械设计
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部