The theory of discrete orthogonal 2 band (or dyadic) wavelet decomposition to the M band case was generalized. Specifically, it was shown that any finite energy signal can be expanded in terms of the dilates and...The theory of discrete orthogonal 2 band (or dyadic) wavelet decomposition to the M band case was generalized. Specifically, it was shown that any finite energy signal can be expanded in terms of the dilates and translates M 1 M band wavelet. Orthogonal and linear phase M band wavelet transform was used to decompose the image into channel which corresponds to different directions and resolution levels. Final edge maps of color medical endoscope image were obtained through combination of both vertical and horizontal directional edge maps.展开更多
文摘The theory of discrete orthogonal 2 band (or dyadic) wavelet decomposition to the M band case was generalized. Specifically, it was shown that any finite energy signal can be expanded in terms of the dilates and translates M 1 M band wavelet. Orthogonal and linear phase M band wavelet transform was used to decompose the image into channel which corresponds to different directions and resolution levels. Final edge maps of color medical endoscope image were obtained through combination of both vertical and horizontal directional edge maps.