中度与极度低氧稀释(moderate or intense low-oxygen dilution,MILD)氧燃烧技术能同时实现低碳和超低NO_(x)排放,是一种创新性的燃烧技术。通过实验方法研究了不同稀释剂(N_(2)、CO_(2)和H_(2)O)、氧气浓度、当量比和氧化剂预热温度下...中度与极度低氧稀释(moderate or intense low-oxygen dilution,MILD)氧燃烧技术能同时实现低碳和超低NO_(x)排放,是一种创新性的燃烧技术。通过实验方法研究了不同稀释剂(N_(2)、CO_(2)和H_(2)O)、氧气浓度、当量比和氧化剂预热温度下甲烷非预混MILD氧燃烧和排放特性。实验发现,N_(2)、CO_(2)和H_(2)O稀释的所有工况中均没有观察到火焰。但N_(2)稀释时,炉内温度和NO排放都比较高,且当氧浓度、当量比或氧化剂温度增加时,NO排放急剧升高(>100×10^(-6)),因此无法实现较好的MILD氧燃烧。与之相比,CO_(2)或H_(2)O稀释下,炉内温度较低,NO排放也非常低(<10×10^(-6));并且NO排放对氧浓度、当量比和氧化剂温度的变化不敏感,能在更宽的范围内建立起低排放的MILD氧燃烧。此外,CO_(2)稀释时会产生较高的CO排放(>20×10^(-6)),但H_(2)O稀释下几乎没有CO排放,且NO排放最低(≈1× 10^(-6))。因此,H_(2)O稀释最有利于实现超低排放的MILD氧燃烧。但实际炉膛应用时需要注意防止H_(2)O稀释造成的炉壁汲水和因此导致的热效率降低、甚至熄火。展开更多
通过数值模拟方法研究了不同氧化剂(O_(2)/N_(2)、O_(2)/CO_(2)和O_(2)/H_(2)O)和燃烧器出口氧浓度(21%~30%)对15kW实验炉内甲烷非预混中度与极度低氧稀释(moderate or intense lowoxygen dilution,MILD)富氧燃烧的流场、燃烧场及湍流...通过数值模拟方法研究了不同氧化剂(O_(2)/N_(2)、O_(2)/CO_(2)和O_(2)/H_(2)O)和燃烧器出口氧浓度(21%~30%)对15kW实验炉内甲烷非预混中度与极度低氧稀释(moderate or intense lowoxygen dilution,MILD)富氧燃烧的流场、燃烧场及湍流–化学相互作用的影响。研究结果表明,不同稀释剂下炉内流动和烟气卷吸情况几乎相同,但在炉内反应方面存在较大差异。各稀释剂下炉内燃烧温度和CO、OH浓度的高低顺序为:N_(2)>CO_(2)>H_(2)O。而且,N_(2)稀释时炉内存在集中的高温区(>1800K),且温度和组分浓度随氧浓度增大而快速升高。而CO_(2)或H_(2)O稀释时炉内温度、组分分布均匀,且对氧浓度变化不敏感。另外,相比CO_(2)或H_(2)O稀释,N_(2)稀释下反应区内的层流火焰速度和Damköhler数(Da)更大,且随氧浓度的升高而急剧增加,30%氧浓度下已经进入传统薄反应区燃烧模式。而CO_(2)或H_(2)O的稀释可以显著降低层流火焰速度,增长化学反应时间,减小Da数,在高氧浓度下依旧保持在分布式反应区,即MILD燃烧区。因此,相比N_(2)稀释,CO_(2)或H_(2)O稀释下更有利于建立MILD富氧燃烧。展开更多
文摘通过数值模拟方法研究了不同氧化剂(O_(2)/N_(2)、O_(2)/CO_(2)和O_(2)/H_(2)O)和燃烧器出口氧浓度(21%~30%)对15kW实验炉内甲烷非预混中度与极度低氧稀释(moderate or intense lowoxygen dilution,MILD)富氧燃烧的流场、燃烧场及湍流–化学相互作用的影响。研究结果表明,不同稀释剂下炉内流动和烟气卷吸情况几乎相同,但在炉内反应方面存在较大差异。各稀释剂下炉内燃烧温度和CO、OH浓度的高低顺序为:N_(2)>CO_(2)>H_(2)O。而且,N_(2)稀释时炉内存在集中的高温区(>1800K),且温度和组分浓度随氧浓度增大而快速升高。而CO_(2)或H_(2)O稀释时炉内温度、组分分布均匀,且对氧浓度变化不敏感。另外,相比CO_(2)或H_(2)O稀释,N_(2)稀释下反应区内的层流火焰速度和Damköhler数(Da)更大,且随氧浓度的升高而急剧增加,30%氧浓度下已经进入传统薄反应区燃烧模式。而CO_(2)或H_(2)O的稀释可以显著降低层流火焰速度,增长化学反应时间,减小Da数,在高氧浓度下依旧保持在分布式反应区,即MILD燃烧区。因此,相比N_(2)稀释,CO_(2)或H_(2)O稀释下更有利于建立MILD富氧燃烧。