期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
煤矿井下动态环境下的改进OSELM定位算法 被引量:1
1
作者 崔丽珍 +1 位作者 洪金祥 史明泉 《测绘通报》 CSCD 北大核心 2023年第5期90-95,共6页
在复杂多变的煤矿井下环境及时并准确地获取井下作业人员位置非常重要,井下通信环境高动态变化导致模型定位精度降低。本文将在线顺序极限学习机(OSELM)算法用于井下定位,与批量式定位算法GA-BP和ELM相比,OSELM算法能更有效地维持原模... 在复杂多变的煤矿井下环境及时并准确地获取井下作业人员位置非常重要,井下通信环境高动态变化导致模型定位精度降低。本文将在线顺序极限学习机(OSELM)算法用于井下定位,与批量式定位算法GA-BP和ELM相比,OSELM算法能更有效地维持原模型定位精度。但OSELM算法存在病态矩阵求逆和平等对待所有新增数据的不足,导致该算法的稳定性和对动态环境的适应能力较差。本文在OSELM算法的基础上分别提出正则化OSELM算法、遗忘因子OSELM算法,以及融合正则化技术和遗忘因子机制的OSELM算法。试验表明,试验环境变化后,OSELM算法的定位精度比GA-BP和ELM算法的定位精度分别高1.4282和1.1622 m;在3 m误差距离范围内,所提正则化和遗忘因子的OSELM算法的定位精度均比OSELM算法高,融合两种机制的OSELM算法的定位准确率最高,比OSELM算法高5%左右。OSELM及其改进算法均能有效提高模型定位精度。 展开更多
关键词 OSELM定位模型 高动态井下环境 正则化技术 遗忘因子机制 增量式学习 位置指纹定位
下载PDF
煤矿井下动态环境基于WiFi的OSELM算法研究
2
作者 崔丽珍 +1 位作者 洪金祥 赫佳星 《传感器与微系统》 CSCD 北大核心 2023年第7期48-51,56,共5页
针对煤矿井下环境高动态变化,导致WiFi指纹匹配定位模型精度降低的问题,提出在线顺序极限学习机(OSELM)的井下定位算法,利用新增接收信号强度指示(RSSI)数据实现对模型的在线实时更新,同时赋予新增数据时效性权重来改进OSELM算法,在保... 针对煤矿井下环境高动态变化,导致WiFi指纹匹配定位模型精度降低的问题,提出在线顺序极限学习机(OSELM)的井下定位算法,利用新增接收信号强度指示(RSSI)数据实现对模型的在线实时更新,同时赋予新增数据时效性权重来改进OSELM算法,在保证定位精度的前提下减少数据采集和模型训练工作量。实验结果表明:与传统的批量学习方法相比,利用OSELM在线学习能力可以改善由于井下环境高动态变化导致定位模型精度降低的问题,并且改进的OSELM算法能更有效提升模型定位精度。 展开更多
关键词 位置指纹定位 在线顺序极限学习机定位模型 高动态井下环境 在线增量学习
下载PDF
高动态井下环境的OSELM定位算法研究
3
作者 崔丽珍 +1 位作者 罗海勇 洪金祥 《无线电工程》 北大核心 2023年第3期714-720,共7页
井下无线通信环境的高动态变化会使定位模型精度降低,可将在线顺序极限学习机(Online Sequential Limit Learning Machine,OSELM)算法用于井下定位,利用在线学习能力实现对模型的实时更新,与批量式处理算法SVM和ELM相比,该算法能更有效... 井下无线通信环境的高动态变化会使定位模型精度降低,可将在线顺序极限学习机(Online Sequential Limit Learning Machine,OSELM)算法用于井下定位,利用在线学习能力实现对模型的实时更新,与批量式处理算法SVM和ELM相比,该算法能更有效地提高模型的定位精度。但在OSELM模型更新过程中,并没有对新增数据有效性进行考虑,针对这一问题,从新增数据时效性和采集新增数据参考点覆盖率2方面对OSELM算法进行改进,同时融合以上2个因素做融合性改进,用权重项表示新增数据对OSELM定位模型的更新程度。实验结果表明,在3 m误差距离范围内,经改进的OSELM算法均能有效提高定位模型精度,更好地改善因井下环境高动态变化导致模型精度降低的问题。 展开更多
关键词 WiFi井下定位 改进OSELM定位模型 高动态井下环境 增量式学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部