期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于免疫粒子群混合算法优化BP网络的矿压预测方法 被引量:7
1
作者 来兴平 万培烽 +4 位作者 单鹏飞 张云 张雷铭 孙浩强 《西安科技大学学报》 CAS 北大核心 2023年第1期1-8,共8页
为攻克综采工作面顶板矿压显现规律预测预报的难题,构建一种基于免疫粒子群混合算法优化BP神经网络的矿压预测模型(IA-PSO-BP),针对BP神经网络收敛速度慢和易陷入局部最优的问题,采用免疫粒子群混合算法优化BP神经网络,并选取11种矿压... 为攻克综采工作面顶板矿压显现规律预测预报的难题,构建一种基于免疫粒子群混合算法优化BP神经网络的矿压预测模型(IA-PSO-BP),针对BP神经网络收敛速度慢和易陷入局部最优的问题,采用免疫粒子群混合算法优化BP神经网络,并选取11种矿压主要影响因素作为模型基础数据,对工作面来压强度和来压步距进行预测。结果表明:IA-PSO-BP网络模型的收敛速度较BP网络模型和PSO-BP网络模型分别提高8倍和2倍,IA-PSO-BP网络模型的预测值与实测值基本吻合,预测结果的相对误差分别约为BP网络模型和PSO-BP模型的1/5和1/3。基于IA-PSO-BP的工作面矿压预测方法具有较快的收敛速度和较高的准确率,实现了工作面初次来压强度、周期来压强度、初次来压步距和周期来压步距距预测,为煤矿井下工作面矿压预测提供了一种新的技术途径。 展开更多
关键词 矿压预测 BP神经网络 免疫算法 粒子群优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部