近年来,生成图模型在复杂网络研究中的作用越来越重要。图的生成过程对于研究疾病的蔓延和信息的传播具有重大意义,同时图模型的生成也有助于更深入地研究复杂网络的特性。为了能够生成既符合真实网络特征又具有结构多样性的复杂网络,...近年来,生成图模型在复杂网络研究中的作用越来越重要。图的生成过程对于研究疾病的蔓延和信息的传播具有重大意义,同时图模型的生成也有助于更深入地研究复杂网络的特性。为了能够生成既符合真实网络特征又具有结构多样性的复杂网络,提出了一种具有社区结构的可调节聚集系数和模块性的无标度网络生成算法——TCMSN(Scale Free Network with Tunable Clustering Coefficient and Modularity)。通过调节混合参数可以调节生成网络的模块性,通过调节社区内连边的概率和混合参数可以对网络聚集系数进行调节。TCMSN采用了合理的连边策略,在不破坏网络结构多样性的情况下,能尽可能维持网络的无标度特性。人工构造数据和真实网络数据的对比实验结果表明,TCMSN算法能够生成可调节聚集系数和模块性的无标度网络模型,且能够生成最接近真实网络社区结构特征的网络模型。展开更多
针对基于随机游走的节点相似性度量模型中存在的大度节点依赖问题,从信息论的角度提出了一种改进的随机游走节点相似性度量方法:基于相对熵的随机游走相似性度量方法RE model(A random walk similarity measure model based on Relative...针对基于随机游走的节点相似性度量模型中存在的大度节点依赖问题,从信息论的角度提出了一种改进的随机游走节点相似性度量方法:基于相对熵的随机游走相似性度量方法RE model(A random walk similarity measure model based on Relative Entropy).首先根据随机游走模型得到网络中节点的转移概率向量,再计算两个节点转移概率向量的相对熵得到该节点对的相似性.由于转移概率向量给出了从一个特定节点出发经过多步随机游走后到达网络其他所有节点的概率,导致网络中的每个节点在计算相对熵的过程中都被等同看待,并且网络规模的增大会使计算得到的节点间相似性耗时更多且存在较大偏差.根据节点经过多步随机游走后到达网络中影响力较大的节点的转移概率来构造该节点的转移概率分布,计算两个节点的转移概率分布的相对熵以得到网络中节点对之间的差异分数,进而得到网络节点间的相似性矩阵.RE model度量方法降低了传统随机游走相似性度量对于大度节点的依赖性.通过在真实网络数据集上的实验表明,RE model算法在对称性、网络传播及社区发现等方面表现良好.展开更多
随着电力系统、交通系统、通信系统等基础设施网络的广泛使用,提高复杂网络的鲁棒性具有重要意义。重连机制是一种高效且简洁的方法,常用于提高网络的鲁棒性。基于0阶零模型的重连机制通过对边的随机删除和创建操作来提高网络的鲁棒性,...随着电力系统、交通系统、通信系统等基础设施网络的广泛使用,提高复杂网络的鲁棒性具有重要意义。重连机制是一种高效且简洁的方法,常用于提高网络的鲁棒性。基于0阶零模型的重连机制通过对边的随机删除和创建操作来提高网络的鲁棒性,其尽管保持了网络的边数,但会引起节点的度值发生变化,如基于香农熵的重连算法;基于1阶零模型的重连机制通过随机选择两条边进行换边操作来提高网络的鲁棒性,其尽管保持了网络的度分布,但随机选边难以准确找到合适的节点,增加了算法的时间成本,如基于最大连通分支的重连算法。因此,为了保持网络的度分布且快速提高网络的鲁棒性,提出了一种基于1阶零模型的快速重连算法(Fast Rewiring Mechanism based on 1-order Null Model,FRM)。FRM算法通过比较每条边的两个端点度值的差异为边加权,根据边的权重优先选择权重较大的两条边,并创建度值相似节点之间的连边来提高网络的鲁棒性。在3个真实网络数据上与4种代表性重连算法相比,对比实验结果表明,FRM算法在度中心性、介数中心性和Page-Rank中心性攻击下最大连通分支中的节点比例s(Q)、基于最大连通分支的鲁棒性指标R和基于香农熵的鲁棒性指标I(G)的表现都更好。展开更多
文摘近年来,生成图模型在复杂网络研究中的作用越来越重要。图的生成过程对于研究疾病的蔓延和信息的传播具有重大意义,同时图模型的生成也有助于更深入地研究复杂网络的特性。为了能够生成既符合真实网络特征又具有结构多样性的复杂网络,提出了一种具有社区结构的可调节聚集系数和模块性的无标度网络生成算法——TCMSN(Scale Free Network with Tunable Clustering Coefficient and Modularity)。通过调节混合参数可以调节生成网络的模块性,通过调节社区内连边的概率和混合参数可以对网络聚集系数进行调节。TCMSN采用了合理的连边策略,在不破坏网络结构多样性的情况下,能尽可能维持网络的无标度特性。人工构造数据和真实网络数据的对比实验结果表明,TCMSN算法能够生成可调节聚集系数和模块性的无标度网络模型,且能够生成最接近真实网络社区结构特征的网络模型。
文摘针对基于随机游走的节点相似性度量模型中存在的大度节点依赖问题,从信息论的角度提出了一种改进的随机游走节点相似性度量方法:基于相对熵的随机游走相似性度量方法RE model(A random walk similarity measure model based on Relative Entropy).首先根据随机游走模型得到网络中节点的转移概率向量,再计算两个节点转移概率向量的相对熵得到该节点对的相似性.由于转移概率向量给出了从一个特定节点出发经过多步随机游走后到达网络其他所有节点的概率,导致网络中的每个节点在计算相对熵的过程中都被等同看待,并且网络规模的增大会使计算得到的节点间相似性耗时更多且存在较大偏差.根据节点经过多步随机游走后到达网络中影响力较大的节点的转移概率来构造该节点的转移概率分布,计算两个节点的转移概率分布的相对熵以得到网络中节点对之间的差异分数,进而得到网络节点间的相似性矩阵.RE model度量方法降低了传统随机游走相似性度量对于大度节点的依赖性.通过在真实网络数据集上的实验表明,RE model算法在对称性、网络传播及社区发现等方面表现良好.
文摘随着电力系统、交通系统、通信系统等基础设施网络的广泛使用,提高复杂网络的鲁棒性具有重要意义。重连机制是一种高效且简洁的方法,常用于提高网络的鲁棒性。基于0阶零模型的重连机制通过对边的随机删除和创建操作来提高网络的鲁棒性,其尽管保持了网络的边数,但会引起节点的度值发生变化,如基于香农熵的重连算法;基于1阶零模型的重连机制通过随机选择两条边进行换边操作来提高网络的鲁棒性,其尽管保持了网络的度分布,但随机选边难以准确找到合适的节点,增加了算法的时间成本,如基于最大连通分支的重连算法。因此,为了保持网络的度分布且快速提高网络的鲁棒性,提出了一种基于1阶零模型的快速重连算法(Fast Rewiring Mechanism based on 1-order Null Model,FRM)。FRM算法通过比较每条边的两个端点度值的差异为边加权,根据边的权重优先选择权重较大的两条边,并创建度值相似节点之间的连边来提高网络的鲁棒性。在3个真实网络数据上与4种代表性重连算法相比,对比实验结果表明,FRM算法在度中心性、介数中心性和Page-Rank中心性攻击下最大连通分支中的节点比例s(Q)、基于最大连通分支的鲁棒性指标R和基于香农熵的鲁棒性指标I(G)的表现都更好。