Imaging the doping elements is doped TiO2 thin film. But it is critical for understanding the photocatalytic activity of still a challenge to characterize the interactions between the dopants and the TiO2 lattice at t...Imaging the doping elements is doped TiO2 thin film. But it is critical for understanding the photocatalytic activity of still a challenge to characterize the interactions between the dopants and the TiO2 lattice at the atomic level. Here, we use high angle annular dark- field/annular bright-field scanning transmission electron microscope (HAADF/ABF-STEM) combined with electron energy loss spectroscopy (EELS) to directly image the individual Cr atoms doped in anatase TiO2(001) thin film from [100] direction. The Cr dopants, which are clearly imaged through the atomic-resolution EELS mappings while can not be seen by HADDF/ABF-STEM, occupy both the substitutional sites of Ti atoms and the interstitial sites of TiO2 matrix. Most of them preferentially locate at the substitutional sites of Ti atoms. These results provide the direct evidence for the doping structure of Cr-doped A- TiO2 thin film at the atomic level and also prove the EELS mapping is an excellent technique for characterizing the doped materials.展开更多
基金This work was financially supported by the National Key R&D Program of China(No.2017YFA0205004)the Anhui Initiative in Quantum Information Technologies(AHY090000)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB36020200)the National Natural Science Foundation of China(No.11620101003,No.11904349,and No.21972129).
基金supported by the Ministry of Science and Technology of China(No.2016YFA0200603 and No.2013CB834605)the"Strategic Priority Research Program"of CAS(No.XDB01020100)+1 种基金the National Natural Science Foundation of China(No.91421313,No.21421063,and No.21573207)Anhui Provincial Natural Science Foundation(1708085MA06)
文摘Imaging the doping elements is doped TiO2 thin film. But it is critical for understanding the photocatalytic activity of still a challenge to characterize the interactions between the dopants and the TiO2 lattice at the atomic level. Here, we use high angle annular dark- field/annular bright-field scanning transmission electron microscope (HAADF/ABF-STEM) combined with electron energy loss spectroscopy (EELS) to directly image the individual Cr atoms doped in anatase TiO2(001) thin film from [100] direction. The Cr dopants, which are clearly imaged through the atomic-resolution EELS mappings while can not be seen by HADDF/ABF-STEM, occupy both the substitutional sites of Ti atoms and the interstitial sites of TiO2 matrix. Most of them preferentially locate at the substitutional sites of Ti atoms. These results provide the direct evidence for the doping structure of Cr-doped A- TiO2 thin film at the atomic level and also prove the EELS mapping is an excellent technique for characterizing the doped materials.