期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于分位数半径动态K-means的分布式负荷聚类算法 被引量:27
1
作者 刘季昂 刘友波 +1 位作者 明畅 余莉娜 《电力系统保护与控制》 EI CSCD 北大核心 2019年第24期15-22,共8页
针对电力负荷曲线聚类中传统的K-means算法对初始值敏感以及需给定类数目的缺陷,将一种基于分位数半径的动态K-means算法应用到日负荷曲线的聚类分析中,并进行了分布式的改进以优化计算效率。此算法结合了两种思想:分布式聚类中的局部... 针对电力负荷曲线聚类中传统的K-means算法对初始值敏感以及需给定类数目的缺陷,将一种基于分位数半径的动态K-means算法应用到日负荷曲线的聚类分析中,并进行了分布式的改进以优化计算效率。此算法结合了两种思想:分布式聚类中的局部聚类与全局聚类,以及层次K-means中以多次k取定值时K-means运算所得到的中心点来表示该类。将多次的K-means运算分配到不同子站点,并使每次K-means运算中k不断改变。再从类的几何特征出发,引入了分位数半径的概念,规定样本点与各类中心点间距的分位数表示该类的半径,于主站点中对各类的中心点间距与类的半径进行大小比较,并进行筛选融合来获得新的类,从而实现较为快速地识别类数目,并且得到新的聚类初始中心与结果。最终以某地区606个用户某月的日负荷数据为研究对象,验证了该算法在电力负荷曲线聚类分析中的有效性。 展开更多
关键词 电力大数据 聚类分析 负荷曲线聚类 分位数半径 分布式聚类
下载PDF
基于形态距离的日负荷数据自适应稳健聚类算法 被引量:27
2
作者 李阳 刘友波 +5 位作者 刘俊勇 明畅 马铁丰 魏文涛 尹龙 宁世超 《中国电机工程学报》 EI CSCD 北大核心 2019年第12期3409-3419,共11页
为克服传统划分式聚类算法的聚类数k值难以确定以及聚类结果稳定性较差的问题,提出一种基于日负荷曲线形态距离的自适应稳健聚类方法。利用差分算法和分位数对原始日负荷曲线进行特征提取,将其转化为描述负荷曲线形态特征的离散类属性数... 为克服传统划分式聚类算法的聚类数k值难以确定以及聚类结果稳定性较差的问题,提出一种基于日负荷曲线形态距离的自适应稳健聚类方法。利用差分算法和分位数对原始日负荷曲线进行特征提取,将其转化为描述负荷曲线形态特征的离散类属性数据,用曲线形态差异度量替代对负荷数据的欧氏距离度量,避免数据标幺化可能带来的信息缺失;进一步引入特征属性加权和隶属度惩罚,根据样本形态特征,提出基于动态层次Fuzzy U-K-modes的自适应聚类算法,通过多阶段聚类和构建聚类系谱,自适应地确定聚类中心和k值,在不过多损失效率的前提下,使聚类结果的稳定性大幅提升;最后以某地区4869个用户的日负荷数据为研究对象,验证了所提算法的有效性。 展开更多
关键词 形态距离 特征提取 差异度量 动态层次Fuzzy U-K-modes 聚类系谱图 自适应稳健聚类
下载PDF
基于边界剥离思想的全局中心聚类算法
3
作者 明畅 敖兰 刘浏 《郑州大学学报(工学版)》 CAS 北大核心 2024年第5期86-94,共9页
全局中心聚类算法如k-means、谱聚类在类簇分布出现重叠粘连现象时往往容易陷入局部最优且参数难以设定,极大地限制了全局中心聚类算法在实际应用中的效果。为解决此问题,提出了一种基于边界剥离思想的全局中心聚类算法。首先,设计了一... 全局中心聚类算法如k-means、谱聚类在类簇分布出现重叠粘连现象时往往容易陷入局部最优且参数难以设定,极大地限制了全局中心聚类算法在实际应用中的效果。为解决此问题,提出了一种基于边界剥离思想的全局中心聚类算法。首先,设计了一步边界剥离法,根据样本点间的反向k近邻关系定义了一种局部距离加权密度,并利用密度经验分布函数一阶差分最大处的密度值作为阈值将数据集分为边界集与核心集。其次,嵌入传统的全局中心聚类算法对核心集进行聚类,得益于核心集的簇间重叠问题已明显改善,嵌入算法将更容易收敛到真实的簇中心。最后,提出一种边界吸引算法,从已被归类的核心集样本点出发,借助已有的反向k近邻关系迭代融合边界集中的样本点以完成对整个数据集的聚类。相较于目前以迭代方式进行的边界剥离算法,所提算法在计算效率上具有明显优势,不需要额外设定复杂的终止条件而直接通过阈值进行边界划分,并且全局性方法在数据局部密度存在差异的情形下具备更强的鲁棒性。在实验阶段,采用3个合成数据集以及6个真实数据集从算法性能、参数敏感性、时间消耗多个方面进行评估,实验结果进一步验证了此算法的有效性与实用性。 展开更多
关键词 全局中心聚类算法 边界剥离 簇重叠 反向k近邻 经验分布
下载PDF
基于分位数半径的动态K-means算法 被引量:5
4
作者 明畅 刘友波 +1 位作者 马铁丰 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第1期48-55,共8页
K-means算法是应用最广泛的聚类算法之一,但存在明显缺陷:对初始值敏感,还需给定类的数目.层次K-means算法提出将多次k取固定值的K-means运算所得到的中心点作为类的代表,并通过对这些中心点进行层次聚类来得到更好的初始聚类中心,然而... K-means算法是应用最广泛的聚类算法之一,但存在明显缺陷:对初始值敏感,还需给定类的数目.层次K-means算法提出将多次k取固定值的K-means运算所得到的中心点作为类的代表,并通过对这些中心点进行层次聚类来得到更好的初始聚类中心,然而在中心的融合过程中并没有有效利用类的几何信息.从类的几何特征入手,提出一种基于类的分位数半径的动态K-means算法(QRD K-means).此算法在层次K-means的基础上令每次K-means运算的k值变动起来,且又引入了分位数半径的概念,用样本点到类中心距离的分位数作为类的半径,将样本点间的关系简化为各个类的分位数半径与类中心的关系.通过中心点间距离与分位数半径大小的比较对中心点进行融合形成新类,从而快速给出良好的聚类结果,同时也确定了类的数目.在仿真实验中,通过与不同算法在时间和分类精确度上的比较分析,也证明该方法快速有效. 展开更多
关键词 K-MEANS 类的数目 分位数半径 动态K-means
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部