Ni0.5Zn0.5Fe2-xCrxO4(0≤x≤0.5)ferrites were successfully prepared by conventional solid state reaction method to investigate the effect of chromium substitution on the structural,electrical and magnetic properties.X-...Ni0.5Zn0.5Fe2-xCrxO4(0≤x≤0.5)ferrites were successfully prepared by conventional solid state reaction method to investigate the effect of chromium substitution on the structural,electrical and magnetic properties.X-ray powder diffraction results demonstrate that all the prepared samples are well crystallized single-phase spinel structures without secondary phase.As chromium concentration increases,the lattice parameter and crystallite size gradually decrease.The magnetic measurement indicates that saturation magnetization is substantially suppressed by Cr3+doping,changing from 73.5 A·m2/kg at x=0 to 46.3 A·m2/kg at x=0.5.While the room-temperature electrical resistivity is more than four orders of magnitude enhanced by Cr3+substitution,reaching up to 1.1×108Ω·cm at x=0.5.The dielectric constant monotonously decreases with rising frequency for these ferrites,showing a normal dielectric dispersion behavior.The compositional dependence of dielectric constant is inverse with that of electrical resistivity,which originates from the reduced Fe2+/Fe3+electric dipole number by doping,indicating inherent correlation between polarization and conduction mechanism in ferrite.展开更多
we report a pure rerromagneuc metallic magnetopiasmonic structure consisting or two-dimensional oraerea Ni nanodisks array on Co film.With a sufficient height of the nanodisks,a steep and asymmetric Fano resonance can...we report a pure rerromagneuc metallic magnetopiasmonic structure consisting or two-dimensional oraerea Ni nanodisks array on Co film.With a sufficient height of the nanodisks,a steep and asymmetric Fano resonance can be excited in this structure.We attribute the fascinating spectral lineshape to the strong coupling between the excitation of surface plasmon polaritons at the interface and the localized surface plasmon resonance of nanodisks.The conclusion is fully confirmed by spectrum measurements in nanostructures with different heights.Furthermore,the enhancement and sign of the magneto-optical Kerr rotation in this structure are significantly modified by the Fano resonance.展开更多
基金Project(11604147)supported by the National Natural Science Foundation of ChinaProject(M32048)supported by the Foundation of National Laboratory of Solid State Microstructures,ChinaProject(20142BBE50014)supported by the Jiangxi Province Key Projects of Science and Technology Support Plan,China。
文摘Ni0.5Zn0.5Fe2-xCrxO4(0≤x≤0.5)ferrites were successfully prepared by conventional solid state reaction method to investigate the effect of chromium substitution on the structural,electrical and magnetic properties.X-ray powder diffraction results demonstrate that all the prepared samples are well crystallized single-phase spinel structures without secondary phase.As chromium concentration increases,the lattice parameter and crystallite size gradually decrease.The magnetic measurement indicates that saturation magnetization is substantially suppressed by Cr3+doping,changing from 73.5 A·m2/kg at x=0 to 46.3 A·m2/kg at x=0.5.While the room-temperature electrical resistivity is more than four orders of magnitude enhanced by Cr3+substitution,reaching up to 1.1×108Ω·cm at x=0.5.The dielectric constant monotonously decreases with rising frequency for these ferrites,showing a normal dielectric dispersion behavior.The compositional dependence of dielectric constant is inverse with that of electrical resistivity,which originates from the reduced Fe2+/Fe3+electric dipole number by doping,indicating inherent correlation between polarization and conduction mechanism in ferrite.
基金Project supported by the National Key Project of Fundamental Research of China(Grant No.2012CB932304)the National Natural Science Foundation of China(Grant Nos.11374146 and U1232210)
文摘we report a pure rerromagneuc metallic magnetopiasmonic structure consisting or two-dimensional oraerea Ni nanodisks array on Co film.With a sufficient height of the nanodisks,a steep and asymmetric Fano resonance can be excited in this structure.We attribute the fascinating spectral lineshape to the strong coupling between the excitation of surface plasmon polaritons at the interface and the localized surface plasmon resonance of nanodisks.The conclusion is fully confirmed by spectrum measurements in nanostructures with different heights.Furthermore,the enhancement and sign of the magneto-optical Kerr rotation in this structure are significantly modified by the Fano resonance.