期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进MobileNet的图像分类方法研究 被引量:24
1
作者 高淑萍 赵清源 +1 位作者 齐小刚 《智能系统学报》 CSCD 北大核心 2021年第1期11-20,共10页
针对神经网络结构的特征提取能力不足以及在包含复杂图像特征的数据集上分类准确率不高的问题,本文提出了一种对MobileNet神经网络的改进策略(L-MobileNet)。将原标准卷积形式替换为深度可分离卷积形式,并将深度卷积层得到的特征图执行... 针对神经网络结构的特征提取能力不足以及在包含复杂图像特征的数据集上分类准确率不高的问题,本文提出了一种对MobileNet神经网络的改进策略(L-MobileNet)。将原标准卷积形式替换为深度可分离卷积形式,并将深度卷积层得到的特征图执行取反操作,通过深度卷积融合层传递至下一层;采用Leaky ReLU激活函数代替原ReLU激活函数来保留图像中更多的正负特征信息,并加入类残差结构避免梯度弥散现象。与6种方法进行对比,实验结果表明:L-MobileNet在数据集Cifar-10、Cifar-100(coarse)、Cifar-100(fine)和Dogs vs Cats上平均准确率和最高准确率都取得了最佳结果。 展开更多
关键词 卷积神经网络 图像分类 特征提取 MobileNet 深度可分离卷积 激活函数 Leaky ReLU 残差结构
下载PDF
基于时间序列的混合神经网络数据融合算法 被引量:11
2
作者 张巧灵 高淑萍 +1 位作者 何迪 《应用数学和力学》 CSCD 北大核心 2021年第1期82-91,共10页
针对传统的数据融合算法对高噪声、大规模、数据结构复杂的时间序列数据融合性能较差的问题,该文提出了一种混合神经网络的数据融合算法(即SCLG算法).SCLG算法的思想如下:首先利用奇异谱分析算法对数据分解重构以达到去噪的目的;其次,... 针对传统的数据融合算法对高噪声、大规模、数据结构复杂的时间序列数据融合性能较差的问题,该文提出了一种混合神经网络的数据融合算法(即SCLG算法).SCLG算法的思想如下:首先利用奇异谱分析算法对数据分解重构以达到去噪的目的;其次,通过深层卷积神经网络提取数据的空间特征和短期时间特征;然后,利用长短期记忆(LSTM)网络和门控循环单元(GRU)网络双层网络,进一步深度提取了数据时间维度上的特征;最后,利用全连接网络,综合主要信息输出最终的决策.通过SP&500和AQI数据集上的实验结果表明,该算法在融合性能及稳定性方面均优于DCNN、CNN⁃LSTM、FDL数据融合算法. 展开更多
关键词 数据融合 时间序列 奇异谱分析 混合神经网络 特征提取
下载PDF
基于深度迁移学习的多尺度股票预测 被引量:1
3
作者 高淑萍 《计算机工程与应用》 CSCD 北大核心 2022年第12期249-259,共11页
股票市场不仅是上市公司的重要融资渠道,也是重要的投资市场,股票预测一直受到人们的关注。为了充分利用来自不同股票价格的信息,提高股票的预测效果,提出一种多尺度股票价格预测模型TL-EMD-LSTM-MA(TELM)。TELM模型通过经验模态分解将... 股票市场不仅是上市公司的重要融资渠道,也是重要的投资市场,股票预测一直受到人们的关注。为了充分利用来自不同股票价格的信息,提高股票的预测效果,提出一种多尺度股票价格预测模型TL-EMD-LSTM-MA(TELM)。TELM模型通过经验模态分解将收盘价分解为多个时间尺度分量,不同时间尺度分量震荡频率不同,反映了不同的周期性信息;根据分量的震荡频率选择不同方法进行预测,高频分量利用深度迁移学习的方法训练堆叠LSTM,低频分量利用移动平均法进行预测;将所有分量的预测值相加作为收盘价的最终预测输出。通过深度迁移学习训练的堆叠LSTM,包含来自不同股票的信息,具备更多行业或市场的知识,能有效降低预测误差。利用移动平均法预测低频分量,更有效捕获股票的总体趋势。对中国A股市场内500支股票以及上证指数、深证成指等指数进行预测,结果表明,与其他模型相比,TELM预测误差最低,拟合优度最高。根据TELM预测的股票收盘价模拟股票交易过程,结果表明TELM投资风险低、收益高。 展开更多
关键词 股票预测 深度迁移学习 经验模态分解 长短期记忆网络 移动平均方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部