The presented work reports the selective catalytic reduction(SCR)of NO_(x) assisted by dielectric barrier discharge plasma via simulating marine diesel engine exhaust,and the experimental results demonstrate that the ...The presented work reports the selective catalytic reduction(SCR)of NO_(x) assisted by dielectric barrier discharge plasma via simulating marine diesel engine exhaust,and the experimental results demonstrate that the low-temperature activity of NH_(3)-SCR assisted by non-thermal plasma is enhanced significantly,particularly in the presence of a C_(3)H_(6) additive.Simultaneously,CeMnZrO_(x)@TiO_(2) exhibits strong tolerance to SO_(2) poisoning and superior catalytic stability.It is worthwhile to explore a new approach to remove NO_(x) from marine diesel engine exhaust,which is of vital significance for both academic research and practical applications.展开更多
基金supported by National Key Research and Development Project of China(No.2019YFC1805503)National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2019A13)+1 种基金the Open Project Program of the State Key Laboratory of Petroleum Pollution Control(No.PPC2019013)Major Science and Technology Projects of Shanxi Province(No.20181102017)。
文摘The presented work reports the selective catalytic reduction(SCR)of NO_(x) assisted by dielectric barrier discharge plasma via simulating marine diesel engine exhaust,and the experimental results demonstrate that the low-temperature activity of NH_(3)-SCR assisted by non-thermal plasma is enhanced significantly,particularly in the presence of a C_(3)H_(6) additive.Simultaneously,CeMnZrO_(x)@TiO_(2) exhibits strong tolerance to SO_(2) poisoning and superior catalytic stability.It is worthwhile to explore a new approach to remove NO_(x) from marine diesel engine exhaust,which is of vital significance for both academic research and practical applications.