期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于机器学习的多模型耦合径流预报研究
被引量:
2
1
作者
祝
宾
皓
周建中
+1 位作者
方威
张勇传
《中国农村水利水电》
北大核心
2023年第5期119-123,128,共6页
为具体考虑各水文模型适用条件、灵活利用模型预报特征对研究流域进行高精度耦合径流预报,将雅砻江流域雅江~吉居区间作为研究对象,以提升径流预报精度和稳定性为首要目的,构建涵盖新安江模型、水箱模型和TOPMODEL模型的多模型径流预报...
为具体考虑各水文模型适用条件、灵活利用模型预报特征对研究流域进行高精度耦合径流预报,将雅砻江流域雅江~吉居区间作为研究对象,以提升径流预报精度和稳定性为首要目的,构建涵盖新安江模型、水箱模型和TOPMODEL模型的多模型径流预报方法库,引入最小二乘法、岭回归法和极端梯度提升树法耦合各模型进行水文预报,并提出多评价指标体系对各耦合方法的预测性能进行对比分析。结论表明,极端梯度提升树法相较于其余两种方法有稳定的预测性能和强大的泛化能力,为该流域其他区间的预报工作提供了新的思路。
展开更多
关键词
多模型预报
水文预报
极端梯度提升树
岭回归
下载PDF
职称材料
题名
基于机器学习的多模型耦合径流预报研究
被引量:
2
1
作者
祝
宾
皓
周建中
方威
张勇传
机构
华中科技大学土木与水利工程学院
华中科技大学数字流域科学与技术湖北省重点实验室
出处
《中国农村水利水电》
北大核心
2023年第5期119-123,128,共6页
基金
国家自然科学基金雅砻江联合研究基金重点项目(U1865202)。
文摘
为具体考虑各水文模型适用条件、灵活利用模型预报特征对研究流域进行高精度耦合径流预报,将雅砻江流域雅江~吉居区间作为研究对象,以提升径流预报精度和稳定性为首要目的,构建涵盖新安江模型、水箱模型和TOPMODEL模型的多模型径流预报方法库,引入最小二乘法、岭回归法和极端梯度提升树法耦合各模型进行水文预报,并提出多评价指标体系对各耦合方法的预测性能进行对比分析。结论表明,极端梯度提升树法相较于其余两种方法有稳定的预测性能和强大的泛化能力,为该流域其他区间的预报工作提供了新的思路。
关键词
多模型预报
水文预报
极端梯度提升树
岭回归
Keywords
multi-model forecasting
hydrological forecasting
extreme gradient boosting trees
ridge regression
分类号
P338 [天文地球—水文科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于机器学习的多模型耦合径流预报研究
祝
宾
皓
周建中
方威
张勇传
《中国农村水利水电》
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部