N-methylimidazolium functionalized anion exchange resin in NO3 form (RNO3) was prepared and used for adsorption of Ce(Ⅳ) in nitric acid medimn. The adsorption amount increased with shaking time increasing and the...N-methylimidazolium functionalized anion exchange resin in NO3 form (RNO3) was prepared and used for adsorption of Ce(Ⅳ) in nitric acid medimn. The adsorption amount increased with shaking time increasing and the adsorption equilibrium was obtained within 180 rain. Ce(Ⅳ) was partially reduced to Ce(Ⅲ) and the reduction percent of Ce(Ⅳ) increased with shaking time increasing. But RNO3 was more stable than other resins due to the high resistance to oxidation. A little increase of adsorption amount was found with concentration of HNO3 increasing. However, the reduction percent of Ce(Ⅳ) decreased with the increase of HNO3 concentration. The addition of NaNO3 decreased the adsorption amount of Ce(Ⅳ) on RNO3 due to the competitive anion exchange reaction. Ce(Ⅳ) was adsorbed on RNO3 in the form of Ce(Ⅳ) anion nitrato-complex. RNO3 and Ce(Ⅳ)-loaded RNO3 were characterized by fourier transform infrared (FT-IR) and thermogravimeric analysis (TGA). Ce(Ⅳ) could be easily separated from RE(Ⅲ) solution by RNO3.展开更多
基金supported by the National Natural Science Foundation of China(51174184)National High-Tech R&D Program(2007AA06Z202)+1 种基金Scientific Research Foundation for the Returned Overseas Chinese ScholarsMinistry of Education of China
文摘N-methylimidazolium functionalized anion exchange resin in NO3 form (RNO3) was prepared and used for adsorption of Ce(Ⅳ) in nitric acid medimn. The adsorption amount increased with shaking time increasing and the adsorption equilibrium was obtained within 180 rain. Ce(Ⅳ) was partially reduced to Ce(Ⅲ) and the reduction percent of Ce(Ⅳ) increased with shaking time increasing. But RNO3 was more stable than other resins due to the high resistance to oxidation. A little increase of adsorption amount was found with concentration of HNO3 increasing. However, the reduction percent of Ce(Ⅳ) decreased with the increase of HNO3 concentration. The addition of NaNO3 decreased the adsorption amount of Ce(Ⅳ) on RNO3 due to the competitive anion exchange reaction. Ce(Ⅳ) was adsorbed on RNO3 in the form of Ce(Ⅳ) anion nitrato-complex. RNO3 and Ce(Ⅳ)-loaded RNO3 were characterized by fourier transform infrared (FT-IR) and thermogravimeric analysis (TGA). Ce(Ⅳ) could be easily separated from RE(Ⅲ) solution by RNO3.