通过引入特征温度与硫系玻璃相匹配的高性能热塑性聚合物聚酰亚胺(PEI)作为光纤包层,结合复丝工艺制备了像素数为900的As2S3/PEI光纤传像束,表征了光纤的损耗、光纤束的断丝率、分辨率和串扰率。As2S3/PEI光纤在2~6μm波段传输性能优...通过引入特征温度与硫系玻璃相匹配的高性能热塑性聚合物聚酰亚胺(PEI)作为光纤包层,结合复丝工艺制备了像素数为900的As2S3/PEI光纤传像束,表征了光纤的损耗、光纤束的断丝率、分辨率和串扰率。As2S3/PEI光纤在2~6μm波段传输性能优异,背景损耗约为0.5 d B/m,在S-H杂质对应的4.0μm波长的峰值损耗为3.5 d B/m。单丝直径为80μm、像素数为900的光纤束的断丝率为1%,分辨率为7 line/mm,串扰率为1%,通过此传像束得到了清晰的电烙铁红外图像。而且,将PEI溶于二甲基乙酰胺(DMAC)后使光纤束表现出很好的柔性。采用这种类似"酸溶玻璃"的可溶于特定溶剂的热塑性聚合物,作为过渡介质,结合复丝工艺有望制备出柔性高分辨率硫系玻璃光纤传像束。展开更多
通过动态蒸馏提纯技术制备了高纯Ge-As-Se和Ge-As-S硫系玻璃。采用两步棒管法拉制了以Ge-As-Se玻璃为纤芯、Ge-As-S玻璃为包层的小芯径阶跃折射率光纤,并使用飞秒激光抽运光纤测试了超连续谱的产生。以Al和GaCl_3分别作为除氧剂和C/H纯...通过动态蒸馏提纯技术制备了高纯Ge-As-Se和Ge-As-S硫系玻璃。采用两步棒管法拉制了以Ge-As-Se玻璃为纤芯、Ge-As-S玻璃为包层的小芯径阶跃折射率光纤,并使用飞秒激光抽运光纤测试了超连续谱的产生。以Al和GaCl_3分别作为除氧剂和C/H纯化剂可以有效消除玻璃中的C、H和O杂质。制备的Ge As Se/Ge As S光纤在2~9μm波段表现出优异的传输性能,光纤数值孔径约为1.3;采用重复频率为10.5 MHz、脉冲宽度为320 fs、中心波长为4.0μm、峰值功率为4.6 k W激光抽运长度为22 cm、芯径为6μm的光纤,获得了覆盖1.9~8.2μm、光谱平坦度为±10 d B、平均功率为4.5 m W的超连续谱。展开更多
文摘通过引入特征温度与硫系玻璃相匹配的高性能热塑性聚合物聚酰亚胺(PEI)作为光纤包层,结合复丝工艺制备了像素数为900的As2S3/PEI光纤传像束,表征了光纤的损耗、光纤束的断丝率、分辨率和串扰率。As2S3/PEI光纤在2~6μm波段传输性能优异,背景损耗约为0.5 d B/m,在S-H杂质对应的4.0μm波长的峰值损耗为3.5 d B/m。单丝直径为80μm、像素数为900的光纤束的断丝率为1%,分辨率为7 line/mm,串扰率为1%,通过此传像束得到了清晰的电烙铁红外图像。而且,将PEI溶于二甲基乙酰胺(DMAC)后使光纤束表现出很好的柔性。采用这种类似"酸溶玻璃"的可溶于特定溶剂的热塑性聚合物,作为过渡介质,结合复丝工艺有望制备出柔性高分辨率硫系玻璃光纤传像束。
文摘通过动态蒸馏提纯技术制备了高纯Ge-As-Se和Ge-As-S硫系玻璃。采用两步棒管法拉制了以Ge-As-Se玻璃为纤芯、Ge-As-S玻璃为包层的小芯径阶跃折射率光纤,并使用飞秒激光抽运光纤测试了超连续谱的产生。以Al和GaCl_3分别作为除氧剂和C/H纯化剂可以有效消除玻璃中的C、H和O杂质。制备的Ge As Se/Ge As S光纤在2~9μm波段表现出优异的传输性能,光纤数值孔径约为1.3;采用重复频率为10.5 MHz、脉冲宽度为320 fs、中心波长为4.0μm、峰值功率为4.6 k W激光抽运长度为22 cm、芯径为6μm的光纤,获得了覆盖1.9~8.2μm、光谱平坦度为±10 d B、平均功率为4.5 m W的超连续谱。