This article mainly summarizes various aspects of hydrogen peroxide(H2O2)production through the anthraquinone route,including hydrogenation catalysts,working solution,regeneration technique,hydrogenation reactors,and ...This article mainly summarizes various aspects of hydrogen peroxide(H2O2)production through the anthraquinone route,including hydrogenation catalysts,working solution,regeneration technique,hydrogenation reactors,and environmental protection.The advances and breakthrough of SINOPEC in the production of H2O2 through the anthraquinone route is presented in this review,highlighting recent innovative technology on these aspects developed independently.The technical prospect and scientific challenges associated with the direct synthesis method from hydrogen and oxygen are also briefly discussed.展开更多
Pore structure characteristics are important to oil and gas exploration in complex low-permeability reservoirs. Using multifractal theory and nuclear magnetic resonance (NMR), we studied the pore structure of low-pe...Pore structure characteristics are important to oil and gas exploration in complex low-permeability reservoirs. Using multifractal theory and nuclear magnetic resonance (NMR), we studied the pore structure of low-permeability sandstone rocks from the 4th Member (Es4) of the Shahejie Formation in the south slope of the Dongying Sag. We used the existing pore structure data from petrophysics, core slices, and mercury injection tests to classify the pore structure into three categories and five subcategories. Then, the T2 spectra of samples with different pore structures were interpolated, and the one- and three-dimensional fractal dimensions and the multifractal spectrum were obtained. Parameters a (intensity of singularity) andf(a) (density of distribution) were extracted from the multifractal spectra. The differences in the three fractal dimensions suggest that the pore structure types correlate with a andf(a). The results calculated based on the multifractal spectrum is consistent with that of the core slices and mercury injection. Finally, the proposed method was applied to an actual logging profile to evaluate the pore structure of low-permeability sandstone reservoirs.展开更多
Nanosize cerium-zirconium solid solution(CZO)with a special fluorite structure has received an increasing research interest due to their remarkable advantages such as excellent oxygen storage capacity and great flexib...Nanosize cerium-zirconium solid solution(CZO)with a special fluorite structure has received an increasing research interest due to their remarkable advantages such as excellent oxygen storage capacity and great flexibility in their composition and structure.By partial metal(including rare earth,transition,alkaline earth or other metal)doping into CZO,the physicochemical properties of these catalytic materials can be controllable adjusted for the study of specific reactions.To date,nanosize CZO has been prepared by co-precipitation,sol-gel,surfactant-assisted approach,solution combustion,micro-emulsion,high energy mechanical milling,etc.The advent of these methodologies has prompted researchers to construct well-defined networks with customized micromorphology and functionalities.In this review,we describe not only the basic structure and synthetic strategies of CZO,but also their relevant applications in environmental catalysis,such as the purification for CO,nitrogen oxides(NOx),volatile organic compounds(VOC),soot,hydrocarbon(HC),CO2 and solid particulate matters(PM),and some reaction mechanisms are also summarized.展开更多
Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized...Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized by various techniques such as XRD, FT-IR, SEM/TEM, BET, UV-vis, DRS, XPS, and photocurrent measurements. The SiO2/BiOCl composite nanosheets displayed high photocatalytic activity and excellent stability in the degradation of organic pollutants such as phenol, bisphenol A (BPA), and rhodamine B (RhB). With respect to those over bare BiOCl, the degradation rates of RhB, BPA, and phenol over 1.88% SiO2/BiOCl increased 16.5%, 29.0%, and 38.7%, respectively. Radical capturing results suggested that h^+ is the major reactive species and that hydroxyl (·OH) and superoxide (·O2^-) radicals could also be involved in the degradation of organic pollutants. The enhanced photocatalytic performances of SiO2/BiOCl composites can be mainly attributed to the improved texture and the formation of intimate SiO2/BiOCl interfaces, which largely promoted the adsorption of organic pollutants, enhanced the light harvesting, and accelerated the separation of e^– and h^+.展开更多
Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic...Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, time- consuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.展开更多
Currently,air pollution is being exacerbated by rapid social,economic,and industrial development.Major air pollutants include volatile organic compounds(VOCs)and CO.Photocatalytic and thermocatalytic technology can be...Currently,air pollution is being exacerbated by rapid social,economic,and industrial development.Major air pollutants include volatile organic compounds(VOCs)and CO.Photocatalytic and thermocatalytic technology can be used to convert VOCs and CO into harmless gases effectively.Recently,photothermal synergistic catalysis has aroused much attention because of its higher performance than those of individual photocatalytic and thermocatalytic processes.There have been many reviews on separate photocatalysts and thermocatalysts for the treatment of VOCs and CO,but few reviews have focused on photothermal synergistic catalysis.In this minireview,we concentrate on recent progress into photothermal synergistic catalysis for the efficient removal of VOCs and CO.The treatment of typical VOCs(such as benzene,toluene,ethanol,formaldehyde,acetone,propylene,and propane)and CO are summarized and analyzed.Furthermore,we discuss the use of conventional reactor technology,such as fixed‐bed quartz reactors,for VOCs and CO removal.We also discuss the mechanism of the photothermal synergistic catalytic removal of VOCs and CO.Finally,we present perspectives for the photothermal synergistic catalytic removal of VOCs and CO.展开更多
In this study, we used the multi-resolution graph-based clustering (MRGC) method for determining the electrofacies (EF) and lithofacies (LF) from well log data obtained from the intraplatform bank gas fields loc...In this study, we used the multi-resolution graph-based clustering (MRGC) method for determining the electrofacies (EF) and lithofacies (LF) from well log data obtained from the intraplatform bank gas fields located in the Amu Darya Basin. The MRGC could automatically determine the optimal number of clusters without prior knowledge about the structure or cluster numbers of the analyzed data set and allowed the users to control the level of detail actually needed to define the EF. Based on the LF identification and successful EF calibration using core data, an MRGC EF partition model including five clusters and a quantitative LF interpretation chart were constructed. The EF clusters 1 to 5 were interpreted as lagoon, anhydrite flat, interbank, low-energy bank, and high-energy bank, and the coincidence rate in the cored interval could reach 85%. We concluded that the MRGC could be accurately applied to predict the LF in non-cored but logged wells. Therefore, continuous EF clusters were partitioned and corresponding LF were characteristics &different LF were analyzed interpreted, and the distribution and petrophysical in the framework of sequence stratigraphy.展开更多
The porosity of H‐ZSM‐5zeolite is known to facilitate the diffusion of molecules in the methanol‐to‐aromatics(MTA)reaction.The activity and selectivity of the H‐ZSM‐5catalyst in the MTAreaction has been studied ...The porosity of H‐ZSM‐5zeolite is known to facilitate the diffusion of molecules in the methanol‐to‐aromatics(MTA)reaction.The activity and selectivity of the H‐ZSM‐5catalyst in the MTAreaction has been studied as a function of crystal size.ZSM‐5zeolites with different crystal sizeswere successfully synthesized by conventional hydrothermal methods.Tailoring ZSM‐5particle sizewas easily controlled by changes to the sol‐gel composition,and in particular,the deionized waterto tetrapropylammonium hydroxide ratio,and crystallization time.The structure of the H‐ZSM‐5zeolites were characterized by X‐ray diffraction and the morphology of the zeolite particles wasdetermined by scanning electron microscopy.N2adsorption‐desorption measurements establishedchanges to the textural properties,and compositional properties were characterized by X‐ray fluorescencespectroscopy.Acidity measurements of the catalysts were measured by pyridine‐adsorbedFourier transform infrared spectroscopy and the temperature‐programmed desorption of ammonia.After subjecting the catalysts to the MTA reaction,the total amount of coke formed on the spentdeactivated catalysts was determined by thermal gravimetric analysis.The results show that theSiO2/Al2O3molar ratios and acidic properties of the H‐ZSM‐5samples are similar,however,thenano‐sized hierarchical ZSM‐5zeolite with an additional level of auxiliary pores possesses a higher展开更多
Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for ...Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for the first time. X‐ray diffraction, N2 adsorption, ultraviolet–visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectrosco‐py, electrochemical impedance spectroscopy, electron paramagnetic resonance, O2 tempera‐ture‐programmed desorption, and photoluminescence were used to characterize the obtained cat‐alysts. The photocatalytic H2O2 production ability of the as‐prepared catalyst was investigated. The results show that plasma treatment influences the morphology, structure, and optical properties of the as‐prepared catalyst. Nitrogen vacancies are active centers, which can adsorb reactant oxygen molecules, trap photoelectrons, and promote the transfer of photoelectrons from the catalyst to the adsorbed oxygen molecules for the subsequent reduction reaction. This work provides a new strat‐egy for synthesizing g‐C3N4‐based catalysts.展开更多
Acoustic reflection imaging in deep water wells is a new application scope for offshore hydrocarbon exploration.Two-dimensional(2 D)geological structure images can be obtained away from a one-dimensional(1 D)borehole ...Acoustic reflection imaging in deep water wells is a new application scope for offshore hydrocarbon exploration.Two-dimensional(2 D)geological structure images can be obtained away from a one-dimensional(1 D)borehole using single-well acoustic reflection imaging.Based on the directivity of dipole source and four-component dipole data,one can achieve the azimuth detection and the three-dimensional(3 D)structural information around the wellbore can be obtained.We first perform matrix rotation on the field fourcomponent data.Then,a series of processing steps are applied to the rotated dipole data to obtain the reflector image.According to the above dipole shear-wave imaging principle,we used four-component cross-dipole logging data from a deviated well in the South China Sea to image geological structures within 50 m of a deviated well,which can delineate the structural configuration and determine its orientation.The configuration of near-borehole bedding boundaries and fault structures from shear-wave imaging results agrees with those from the Inline and Xline seismic profiles of the study area.In addition,the configuration and orientation of the fault structure images are consistent with regional stress maps and the results of the borehole stress anisotropy analysis.Furthermore,the dip azimuth of the bedding boundary images was determined using borehole wall resistivity data.Results of this study indicate that integrating borehole acoustic reflection with seismic imaging not only fills the gap between the two measurement scales but also accurately delineates geological structures in the borehole vicinity.展开更多
Photocatalytic hydrogen(H2)evolution via water spilling over semiconductors has been considered to be one of the most promising strategies for sustainable energy supply in the future to provide non-pollution and renew...Photocatalytic hydrogen(H2)evolution via water spilling over semiconductors has been considered to be one of the most promising strategies for sustainable energy supply in the future to provide non-pollution and renewable energy.The key to efficient conversion of solar-chemical energy is the design of an efficient structure for high charge separation and transportation.Therefore,cocatalysts are necessary in boosting photocatalytic H2 evolution.To date,semiconductor photocatalysts have been modified by various cocatalysts due to the extended light harvest,enhanced charge carrier separation efficiency and improved stability.This review focuses on recent developments of cocatalysts in photocatalytic H2 evolution,the roles and mechanism of the cocatalysts are discussed in detail.The cocatalysts can be divided into the following categories:metal/alloy cocatalysts,metal phosphides cocatalysts,metal oxide/hydroxide cocatalysts,carbon-based cocatalysts,dual cocatalysts,Z-scheme cocatalysts and MOFs cocatalysts.The future research and forecast for photocatalytic hydrogen generation are also suggested.展开更多
文摘This article mainly summarizes various aspects of hydrogen peroxide(H2O2)production through the anthraquinone route,including hydrogenation catalysts,working solution,regeneration technique,hydrogenation reactors,and environmental protection.The advances and breakthrough of SINOPEC in the production of H2O2 through the anthraquinone route is presented in this review,highlighting recent innovative technology on these aspects developed independently.The technical prospect and scientific challenges associated with the direct synthesis method from hydrogen and oxygen are also briefly discussed.
基金supported by the National Natural Science Foundation of China(Grant No.41202110)Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)(Grant No.PLN201612)+1 种基金the Applied Basic Research Projects in Sichuan Province(Grant No.2015JY0200)Open Fund Project from Sichuan Key Laboratory of Natural Gas Geology(Grant No.2015trqdz07)
文摘Pore structure characteristics are important to oil and gas exploration in complex low-permeability reservoirs. Using multifractal theory and nuclear magnetic resonance (NMR), we studied the pore structure of low-permeability sandstone rocks from the 4th Member (Es4) of the Shahejie Formation in the south slope of the Dongying Sag. We used the existing pore structure data from petrophysics, core slices, and mercury injection tests to classify the pore structure into three categories and five subcategories. Then, the T2 spectra of samples with different pore structures were interpolated, and the one- and three-dimensional fractal dimensions and the multifractal spectrum were obtained. Parameters a (intensity of singularity) andf(a) (density of distribution) were extracted from the multifractal spectra. The differences in the three fractal dimensions suggest that the pore structure types correlate with a andf(a). The results calculated based on the multifractal spectrum is consistent with that of the core slices and mercury injection. Finally, the proposed method was applied to an actual logging profile to evaluate the pore structure of low-permeability sandstone reservoirs.
基金financially supported by the National Natural Science Foundation of China (21673290, U1662103)~~
文摘Nanosize cerium-zirconium solid solution(CZO)with a special fluorite structure has received an increasing research interest due to their remarkable advantages such as excellent oxygen storage capacity and great flexibility in their composition and structure.By partial metal(including rare earth,transition,alkaline earth or other metal)doping into CZO,the physicochemical properties of these catalytic materials can be controllable adjusted for the study of specific reactions.To date,nanosize CZO has been prepared by co-precipitation,sol-gel,surfactant-assisted approach,solution combustion,micro-emulsion,high energy mechanical milling,etc.The advent of these methodologies has prompted researchers to construct well-defined networks with customized micromorphology and functionalities.In this review,we describe not only the basic structure and synthetic strategies of CZO,but also their relevant applications in environmental catalysis,such as the purification for CO,nitrogen oxides(NOx),volatile organic compounds(VOC),soot,hydrocarbon(HC),CO2 and solid particulate matters(PM),and some reaction mechanisms are also summarized.
基金funding from the National Natural Science Foundation of China (21567008, 21707055)the Program for Innovative Research Team of Guangdong University of Petrochemical Technology+4 种基金the Yangfan talents Project of Guangdong Provincethe Innovation-driven “5511” Program in Jiangxi Province (20165BCB18014)the Funding Program for Academic and Technological Leaders of Major Disciplines in Jiangxi Province (20172BCB22018)the Program for New Century Excellent Talents in Fujian Province Universitythe Natural Science Foundation for Distinguished Young Scholars of Hunan Province, China (2017JJ1026)~~
文摘Novel SiO2/BiOCl composites were fabricated by decorating BiOCl nanosheets with SiO2 nanoparticles via a simple hydrothermal process. The as-prepared pure BiOCl and SiO2/BiOCl composites were intensively characterized by various techniques such as XRD, FT-IR, SEM/TEM, BET, UV-vis, DRS, XPS, and photocurrent measurements. The SiO2/BiOCl composite nanosheets displayed high photocatalytic activity and excellent stability in the degradation of organic pollutants such as phenol, bisphenol A (BPA), and rhodamine B (RhB). With respect to those over bare BiOCl, the degradation rates of RhB, BPA, and phenol over 1.88% SiO2/BiOCl increased 16.5%, 29.0%, and 38.7%, respectively. Radical capturing results suggested that h^+ is the major reactive species and that hydroxyl (·OH) and superoxide (·O2^-) radicals could also be involved in the degradation of organic pollutants. The enhanced photocatalytic performances of SiO2/BiOCl composites can be mainly attributed to the improved texture and the formation of intimate SiO2/BiOCl interfaces, which largely promoted the adsorption of organic pollutants, enhanced the light harvesting, and accelerated the separation of e^– and h^+.
基金supported by NSFC(Grant No.U1562109 and 41774082)the National Major Research Plan(Grant No.2016YFC0601100and 2016ZX05004)the Project of Scientific Research and Technological Development,CNPC(Grant No.2017D-5006-16)
文摘Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, time- consuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.
文摘Currently,air pollution is being exacerbated by rapid social,economic,and industrial development.Major air pollutants include volatile organic compounds(VOCs)and CO.Photocatalytic and thermocatalytic technology can be used to convert VOCs and CO into harmless gases effectively.Recently,photothermal synergistic catalysis has aroused much attention because of its higher performance than those of individual photocatalytic and thermocatalytic processes.There have been many reviews on separate photocatalysts and thermocatalysts for the treatment of VOCs and CO,but few reviews have focused on photothermal synergistic catalysis.In this minireview,we concentrate on recent progress into photothermal synergistic catalysis for the efficient removal of VOCs and CO.The treatment of typical VOCs(such as benzene,toluene,ethanol,formaldehyde,acetone,propylene,and propane)and CO are summarized and analyzed.Furthermore,we discuss the use of conventional reactor technology,such as fixed‐bed quartz reactors,for VOCs and CO removal.We also discuss the mechanism of the photothermal synergistic catalytic removal of VOCs and CO.Finally,we present perspectives for the photothermal synergistic catalytic removal of VOCs and CO.
基金supported by the National Science and Technology Major Project of China(No.2011ZX05029-003)CNPC Science Research and Technology Development Project,China(No.2013D-0904)
文摘In this study, we used the multi-resolution graph-based clustering (MRGC) method for determining the electrofacies (EF) and lithofacies (LF) from well log data obtained from the intraplatform bank gas fields located in the Amu Darya Basin. The MRGC could automatically determine the optimal number of clusters without prior knowledge about the structure or cluster numbers of the analyzed data set and allowed the users to control the level of detail actually needed to define the EF. Based on the LF identification and successful EF calibration using core data, an MRGC EF partition model including five clusters and a quantitative LF interpretation chart were constructed. The EF clusters 1 to 5 were interpreted as lagoon, anhydrite flat, interbank, low-energy bank, and high-energy bank, and the coincidence rate in the cored interval could reach 85%. We concluded that the MRGC could be accurately applied to predict the LF in non-cored but logged wells. Therefore, continuous EF clusters were partitioned and corresponding LF were characteristics &different LF were analyzed interpreted, and the distribution and petrophysical in the framework of sequence stratigraphy.
基金supported by the National Natural Science Foundation of China (21676300)~~
文摘The porosity of H‐ZSM‐5zeolite is known to facilitate the diffusion of molecules in the methanol‐to‐aromatics(MTA)reaction.The activity and selectivity of the H‐ZSM‐5catalyst in the MTAreaction has been studied as a function of crystal size.ZSM‐5zeolites with different crystal sizeswere successfully synthesized by conventional hydrothermal methods.Tailoring ZSM‐5particle sizewas easily controlled by changes to the sol‐gel composition,and in particular,the deionized waterto tetrapropylammonium hydroxide ratio,and crystallization time.The structure of the H‐ZSM‐5zeolites were characterized by X‐ray diffraction and the morphology of the zeolite particles wasdetermined by scanning electron microscopy.N2adsorption‐desorption measurements establishedchanges to the textural properties,and compositional properties were characterized by X‐ray fluorescencespectroscopy.Acidity measurements of the catalysts were measured by pyridine‐adsorbedFourier transform infrared spectroscopy and the temperature‐programmed desorption of ammonia.After subjecting the catalysts to the MTA reaction,the total amount of coke formed on the spentdeactivated catalysts was determined by thermal gravimetric analysis.The results show that theSiO2/Al2O3molar ratios and acidic properties of the H‐ZSM‐5samples are similar,however,thenano‐sized hierarchical ZSM‐5zeolite with an additional level of auxiliary pores possesses a higher
基金supported by the Pilot Program of University of Liaoning Innovation and Education Reform~~
文摘Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for the first time. X‐ray diffraction, N2 adsorption, ultraviolet–visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectrosco‐py, electrochemical impedance spectroscopy, electron paramagnetic resonance, O2 tempera‐ture‐programmed desorption, and photoluminescence were used to characterize the obtained cat‐alysts. The photocatalytic H2O2 production ability of the as‐prepared catalyst was investigated. The results show that plasma treatment influences the morphology, structure, and optical properties of the as‐prepared catalyst. Nitrogen vacancies are active centers, which can adsorb reactant oxygen molecules, trap photoelectrons, and promote the transfer of photoelectrons from the catalyst to the adsorbed oxygen molecules for the subsequent reduction reaction. This work provides a new strat‐egy for synthesizing g‐C3N4‐based catalysts.
基金supported by the National Natural Science Foundation of China(Nos.41804124,41774138,41804121,41604109)China Academy of Sciences Strategic Leading Science and Technology Project(Grant Nos.XDA14020304,XDA14020302)+2 种基金Shandong Provincial Natural Science Foundation,China(No.ZR2019BD039)Shandong Province Postdoctoral Innovation Project(No.201901011)China Postdoctoral Science Foundation(Grant Nos.2019T120615,2018M632745)
文摘Acoustic reflection imaging in deep water wells is a new application scope for offshore hydrocarbon exploration.Two-dimensional(2 D)geological structure images can be obtained away from a one-dimensional(1 D)borehole using single-well acoustic reflection imaging.Based on the directivity of dipole source and four-component dipole data,one can achieve the azimuth detection and the three-dimensional(3 D)structural information around the wellbore can be obtained.We first perform matrix rotation on the field fourcomponent data.Then,a series of processing steps are applied to the rotated dipole data to obtain the reflector image.According to the above dipole shear-wave imaging principle,we used four-component cross-dipole logging data from a deviated well in the South China Sea to image geological structures within 50 m of a deviated well,which can delineate the structural configuration and determine its orientation.The configuration of near-borehole bedding boundaries and fault structures from shear-wave imaging results agrees with those from the Inline and Xline seismic profiles of the study area.In addition,the configuration and orientation of the fault structure images are consistent with regional stress maps and the results of the borehole stress anisotropy analysis.Furthermore,the dip azimuth of the bedding boundary images was determined using borehole wall resistivity data.Results of this study indicate that integrating borehole acoustic reflection with seismic imaging not only fills the gap between the two measurement scales but also accurately delineates geological structures in the borehole vicinity.
基金financially supported by the National Natural Science Foundation of China(51572295,21273285 and 21003157)Beijing Nova Program(2008B76)Science Foundation of China University of Petroleum,Beijing(KYJJ2012-06-20 and 2462016YXBS05)~~
文摘Photocatalytic hydrogen(H2)evolution via water spilling over semiconductors has been considered to be one of the most promising strategies for sustainable energy supply in the future to provide non-pollution and renewable energy.The key to efficient conversion of solar-chemical energy is the design of an efficient structure for high charge separation and transportation.Therefore,cocatalysts are necessary in boosting photocatalytic H2 evolution.To date,semiconductor photocatalysts have been modified by various cocatalysts due to the extended light harvest,enhanced charge carrier separation efficiency and improved stability.This review focuses on recent developments of cocatalysts in photocatalytic H2 evolution,the roles and mechanism of the cocatalysts are discussed in detail.The cocatalysts can be divided into the following categories:metal/alloy cocatalysts,metal phosphides cocatalysts,metal oxide/hydroxide cocatalysts,carbon-based cocatalysts,dual cocatalysts,Z-scheme cocatalysts and MOFs cocatalysts.The future research and forecast for photocatalytic hydrogen generation are also suggested.