Fe/N/C is a promising non-platinum catalyst for the oxygen reduction reaction (ORR). Even so, mass transfer remains a challenge in the application of Fe/N/C to proton exchange membrane fuel cells, due to the high ca...Fe/N/C is a promising non-platinum catalyst for the oxygen reduction reaction (ORR). Even so, mass transfer remains a challenge in the application of Fe/N/C to proton exchange membrane fuel cells, due to the high catalyst loadings required. In the present work, mesoporous Fe/N/C was syn- thesized through heat treatment of K]600 carbon black coated with poly-2-aminobenzimidazole and FeC13. The as-prepared Fe/N/C possesses a unique hollow-shell structure that contains a buffer zone allowing both water formation and vaporization, and also facilitates the mass transfer of gas- eous oxygen. This catalyst generated an oxygen reduction reaction activiW of 9.21 A/g in conjunc- tion with a peak power density of 0.71 W/cm2.展开更多
基金supported by the National Basic Research Program of Chain(973 Program,2015CB932300)the National Natural Science Foundation of China(21373175,21321062,21361140374)Fundamental Research Funds for the Central Universities(20720150109)
文摘Fe/N/C is a promising non-platinum catalyst for the oxygen reduction reaction (ORR). Even so, mass transfer remains a challenge in the application of Fe/N/C to proton exchange membrane fuel cells, due to the high catalyst loadings required. In the present work, mesoporous Fe/N/C was syn- thesized through heat treatment of K]600 carbon black coated with poly-2-aminobenzimidazole and FeC13. The as-prepared Fe/N/C possesses a unique hollow-shell structure that contains a buffer zone allowing both water formation and vaporization, and also facilitates the mass transfer of gas- eous oxygen. This catalyst generated an oxygen reduction reaction activiW of 9.21 A/g in conjunc- tion with a peak power density of 0.71 W/cm2.