提高碳材料中氮的掺杂含量,尤其是吡啶氮的含量,已被证明可以显著提升锂硫(Li-S)电池的性能.尽管在碳材料中氮掺杂具有积极作用,但在实际操作中要实现>5 at.%的高氮掺杂含量仍非易事.此外,无法调节碳材料中特定的氮种类也是研究中的...提高碳材料中氮的掺杂含量,尤其是吡啶氮的含量,已被证明可以显著提升锂硫(Li-S)电池的性能.尽管在碳材料中氮掺杂具有积极作用,但在实际操作中要实现>5 at.%的高氮掺杂含量仍非易事.此外,无法调节碳材料中特定的氮种类也是研究中的一个难题.在本文中,我们通过在氩气气氛下煅烧预先经过磷化处理的泛酸钙,得到了一种三维蜂窝状的氮(N)掺杂介孔碳(PNMC),其N掺杂含量高达8.82 at.%(吡啶N含量为3.49 at.%).磷掺杂不仅有助于提高N掺杂量,还有助于提升对多硫化物的吸附能力.实验证明,在800℃下制备的PNMC组装的硫正极(S/PNMC-800)表现出优异的电化学性能,在1 C下经过300圈循环后仍有556.7 mA h g^(-1)放电比容量.本工作提出了一种调控碳材料中吡啶氮含量的简便方法,为用于锂硫电池的多功能硫载体材料的开发提供启发.展开更多
基金supported by the National Key R&D Program of China(2021YFB2401800)the National Natural Science Foundation of China(2217090605 and 21875022)+1 种基金the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0654 and cstc2020jcyj-msxmX0589)support from Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘提高碳材料中氮的掺杂含量,尤其是吡啶氮的含量,已被证明可以显著提升锂硫(Li-S)电池的性能.尽管在碳材料中氮掺杂具有积极作用,但在实际操作中要实现>5 at.%的高氮掺杂含量仍非易事.此外,无法调节碳材料中特定的氮种类也是研究中的一个难题.在本文中,我们通过在氩气气氛下煅烧预先经过磷化处理的泛酸钙,得到了一种三维蜂窝状的氮(N)掺杂介孔碳(PNMC),其N掺杂含量高达8.82 at.%(吡啶N含量为3.49 at.%).磷掺杂不仅有助于提高N掺杂量,还有助于提升对多硫化物的吸附能力.实验证明,在800℃下制备的PNMC组装的硫正极(S/PNMC-800)表现出优异的电化学性能,在1 C下经过300圈循环后仍有556.7 mA h g^(-1)放电比容量.本工作提出了一种调控碳材料中吡啶氮含量的简便方法,为用于锂硫电池的多功能硫载体材料的开发提供启发.